Problem Set 7 - Solutions

1. Prove that $z_{8} \oplus z_{2}$ is not isomorphic to $z_{4} \oplus z_{4}$.

Proof:

$z_{8} \oplus z_{2}$ Contains elements of order 8, while $z_{4} \oplus z_{4}$ does not.
QED
2. Prove that the group of complex numbers under addition is isomorphic to $\mathbb{R} \oplus \mathbb{R}$.

Proof:

Define a mapping ϕ from \mathbb{C} to $\mathbb{R} \oplus \mathbb{R}$ by $\phi(a+b i)=(a, b)$.
One-to-one:
Suppose $\phi(a+b i)=\phi\left(a^{\prime}+b^{\prime} i\right)$. Then $(a, b)=\left(a^{\prime}, b^{\prime}\right)$. Thus, $a=a^{\prime}$ and $\mathrm{b}=b^{\prime}$.

Onto:

For all $(a, b) \in \mathbb{R} \oplus \mathbb{R}, a+b i \in \mathbb{C}$ maps to it.

Operation Preserving (O.P.):

$$
\begin{aligned}
\phi\left((a+b i)+\left(a^{\prime}+b^{\prime} i\right)\right) & =\phi\left(\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) i\right) \\
& =\left(a+a^{\prime}, b+b^{\prime}\right)=(a, b)+\left(a^{\prime}, b^{\prime}\right)=\phi(a+b i)+\phi\left(a^{\prime}+b^{\prime} i\right)
\end{aligned}
$$

3. In $z_{40} \oplus z_{30}$, find two subgroups of order 12 .

Solution:

$\langle 10\rangle \oplus\langle 10\rangle$ and $\langle 20\rangle \oplus\langle 5\rangle$.
4. Find a subgroup of $z_{12} \oplus z_{4} \oplus z_{15}$ that has order 9 .

Solution:

$\langle 4\rangle \oplus\{0\} \oplus\langle 5\rangle$.
QED
5. Find an isomorphism from z_{12} to $z_{4} \oplus z_{3}$.

Solution:

Define $\phi: \mathbb{Z}_{12} \rightarrow\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{3}\right)$ by $\phi: x \rightarrow(x \bmod 4, x \bmod 3)$

One-to-one:
Suppose $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)$. Then, $\left(x_{1} \bmod 4, x_{1} \bmod 3\right)=\left(x_{2} \bmod 4, x_{2} \bmod 3\right)$. Thus, $x_{1} \bmod 4=x_{2} \bmod 4$ for $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbb{Z}_{4}$ and $x_{1} \bmod 3=x_{2} \bmod 3$ for $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbb{Z}_{3}$. So, $x_{1}=x_{2}$. Onto:

Take $(s, t) \in\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{3}\right)$. Let $s=x \bmod 4$ and $t=x \bmod 3$. Now, the unique $x \in \mathbb{Z}_{12}$ satisfying both of the previous equations simultaneously maps to $(s, t) \in\left(\mathbb{Z}_{4} \oplus \mathbb{Z}_{3}\right)$.

Operation Preserving (O.P.):

$$
\begin{aligned}
\phi(x+y) & =((x+y) \bmod 4,(x+y) \bmod 3) \\
& =(x \bmod 4, x \bmod 3)+(y \bmod 4, y \bmod 3)=\phi(x)+\phi(y)
\end{aligned}
$$

6. Suppose that ϕ is an isomorphism from $z_{3} \oplus z_{5}$ to z_{15} and $\phi(2,3)=2$. Find an element in
$z_{.3} \oplus z_{5}$ that maps to 1.

Solution:

Since $\phi(2,3)=2$, we have $8 \phi(2,3)=16=1(\bmod 15)$. Now, since ϕ is operation preserving, we have:

$$
\begin{aligned}
1 & =8 \phi(2,3)=\phi(2,3)+\phi(2,3)+\ldots+\phi(2,3) \\
& =\phi((2,3)+(2,3)+\ldots+(2,3))=\phi(16,24)=\phi(1,4)
\end{aligned}
$$

(Note: $1=1 \bmod 3$ and $4=4 \bmod 5$).
So, $\phi(1,4)=1$.

Alternate Solution:

$\phi:\left(Z_{3} \oplus Z_{5}\right) \rightarrow Z_{15}$. Now, $(2,3)=(2,-2)$ maps to 2. Also, $(1,-1)=(1,4)$ and $(1,-1)$ a generator of $\left(Z_{3} \oplus Z_{5}\right)$. So, $\phi(1,4)=1$.

QED
7. Let $H=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \right\rvert\, a, b, d \in \mathbb{R}, a d \neq 0\right\}$. Is H a normal subgroup of $G L(2, \mathbb{R})$?

Solution:

No. Let $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Then, A is in H and B is in $G L(2, \mathbb{R})$,
but $B A B^{-1}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right] \notin H$. So H is not Normal in
$G L(2, \mathbb{R})$ by the normal subgroup test.
QED
8. Prove that a factor group of a cyclic group is cylic.

Proof:

If G is generated by a, then G / H is generated by aH. Symbolically, that is if $G=\langle a\rangle$, then $G / H=\langle a H\rangle$.

QED
9. Prove that a factor group of an abelian group is abelian.

Proof:

$$
(a H)(b H)=(a b) H=(b a) H=(b H)(a H) .
$$

(Note: The first and third equalities are a result of the definition of the product in factor groups and the middle equality is due to the underlying group being abelian.)

QED
10. What is the order of the element $14+\langle 8\rangle$ in the factor group $Z_{24} /\langle 8\rangle$?

Solution:

$\mathbb{Z}_{24} /\langle 8\rangle=\left\{a+\langle 8\rangle \mid a \in \mathbb{Z}_{24}\right\}=\{0+\langle 8\rangle, 1+\langle 8\rangle, \ldots 7+\langle 8\rangle\}$.
Computing powers of $14+\langle 8\rangle$, we obtain:

$$
\begin{aligned}
& (14+\langle 8\rangle)^{2}=(14+\langle 8\rangle)(14+\langle 8\rangle)=(14+14)+\langle 8\rangle=28+\langle 8\rangle=4+\langle 8\rangle \neq e . \\
& (14+\langle 8\rangle)^{3}=(4+\langle 8\rangle)(14+\langle 8\rangle)=18+\langle 8\rangle \neq e . \\
& (14+\langle 8\rangle)^{4}=(18+\langle 8\rangle)(14+\langle 8\rangle)=32+\langle 8\rangle=(8+\langle 8\rangle)=0+\langle 8\rangle=e .
\end{aligned}
$$

So, $|14+\langle 8\rangle|=4$.

