Problem Set 6 - Solutions

Directions: Work all of the following problems.

1. Prove or Disprove that $U(20)$ and $U(24)$ are isomorphic.

Solution: They are not isomorphic since $\mathrm{U}(20)$ has three elements of order 2, whereas $\mathrm{U}(24)$ has seven elements of order 2.

QED
2. Let $G=\{a+b \sqrt{2} \mid a, b$ rational $\}$ and $H=\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b\right.$ rational $\}$. Show that G and H are isomorphic under addition. Does your isomorphism preserve multiplication as well?

Solution:

Let $\phi:(a+b \sqrt{2}) \rightarrow\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]$. This function is clearly a bijective map. To show O.P., suppose $x=a+b \sqrt{2}$ and $y=a^{\prime}+b^{\prime} \sqrt{2}$. Then
$\phi(x+y)=\phi\left((a+b \sqrt{2})+\left(a^{\prime}+b^{\prime} \sqrt{2}\right)\right)=\phi\left(\left(a+a^{\prime}\right)+\left(\left(b+b^{\prime}\right) \sqrt{2}\right)\right)$
$=\left[\begin{array}{cc}a+a^{\prime} & 2 b+2 b^{\prime} \\ b+b^{\prime} & a+a^{\prime}\end{array}\right]=\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right]+\left[\begin{array}{cc}a^{\prime} & 2 b^{\prime} \\ b^{\prime} & a^{\prime}\end{array}\right]=\phi(x)+\phi(y)$

Yes, the given isomorphism also preserves multiplication!
3. Let $R^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right) \mid a_{i} \in R\right\}$. Show that the mapping $\phi:\left(a_{1}, a_{2}, \ldots ., a_{n}\right) \rightarrow\left(-a_{1},-a_{2}, \ldots .,-a_{n}\right)$ is an automorphism of the group R^{n} under componentwise addition. Describe the action of the inversion, ϕ, geometrically.

Solution:

$\left(-a_{1}, \ldots,-a_{n}\right)=\left(-b_{1}, \ldots,-b_{n}\right)$ implies $\left(a_{1}, \ldots, a_{n}\right)=\left(b_{1}, \ldots, b_{n}\right)$., so ϕ is 1-1. Now, for any $\left(a_{1}, \ldots, a_{n}\right)$, we have $\phi\left(-a_{1}, \ldots,-a_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$. So, ϕ is onto. To show ϕ O.P., we $\phi\left(\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)\right)=\phi\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)=\left(-\left(a_{1}+b_{1}\right), \ldots-\left(a_{n}+b_{n}\right)\right)$. $=\left(-a_{1}, \ldots,-a_{n}\right)+\left(-b_{1}, \ldots,-b_{n}\right)=\phi\left(a_{1}, \ldots, a_{n}\right)+\phi\left(b_{1}, \ldots, b_{n}\right)$

QED
4. Let $G=\{0, \pm 2, \pm 4, \pm 6, \ldots\}$ and $H=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$. Show that G and H are isomorphic groups under addition. Generalize the case when $G=\langle m\rangle$ and $H=\langle n\rangle$.

Proof:

The mapping $\phi(x)=\frac{3}{2} x$ is an isomorphism from G onto H (easy to verify). When $G=\langle m\rangle$ and $H=\langle n\rangle$, the mapping $\phi(x)=\frac{3}{2} x$ is an isomorphism from G to H.
5. Show that every automorphism ϕ of the rational numbers Q under addition to itself has the form $\phi(x)=x \phi(1)$.

Proof:

$$
\begin{aligned}
\phi(1) & =\phi\left(\frac{1}{n}+\frac{1}{n}+\ldots \frac{1}{n}\right) \quad \mathrm{n} \text { of these } \\
& =n \phi\left(\frac{1}{n}\right)
\end{aligned}
$$

(Cont.)
Proof (Cont.)

So, $\phi\left(\frac{1}{n}\right)=\frac{1}{n} \phi(1)$. Now, for the same reasoning (i.e. since ϕ additive)
$\phi\left(\frac{m}{n}\right)=m \phi\left(\frac{1}{n}\right)$. So, $\phi\left(\frac{m}{n}\right)=m \phi\left(\frac{1}{n}\right)=m\left(\frac{1}{n} \phi(1)\right)=\frac{m}{n} \phi(1)$.
QED
6. Let n be a positive integer. Let $H=\{0, \pm n, \pm 2 n, \pm 3 n, \ldots\}$. Find all left cosets of H in Z . How many are there?

Solution:

There are n cosets. They are $0+\langle n\rangle, 1+\langle n\rangle, 2+\langle n\rangle, \ldots .(n-1)+\langle n\rangle$.
7. Suppose that a has order 15. Find all of the left cosets of $\left\langle a^{5}\right\rangle$ in $\langle a\rangle$.

Solution:

$\left|\left\langle a^{5}\right\rangle\right|=3$ so there are $\frac{15}{3}=5$ cosets. They are $\left\langle a^{5}\right\rangle, a\left\langle a^{5}\right\rangle, a^{2}\left\langle a^{5}\right\rangle, a^{3}\left\langle a^{5}\right\rangle, a^{4}\left\langle a^{5}\right\rangle$.
8. Let C^{*} be the group of nonzero complex numbers under multiplication and let $H=\left\{a+b i \in C^{*} \mid a^{2}+b^{2}=1\right\}$. Give a geometric description of the $\operatorname{coset}(c+d i) H$.

Solution:

The coset containing $c+d i$ is the circle with center at the origin and radius $\sqrt{c^{2}+d^{2}}$
9. Suppose that K is a proper subgroup of H and H is a proper subgroup of G . If $|K|=42$ and $|G|=420$, what are the possible orders of H ?

Solution:

84 or 210.
QED
10. Prove that the order of $U(n)$ is even when $n>2$.

Proof:

($n-1$) in $\mathrm{U}(\mathrm{n})$ has order 2 . Also, the order of any element divides the order of the group. So, we have that 2 divides the order of the group. Thus, the order of $U(n)$ is even.

QED
11. Suppose $|G|=8$. Show that G must have an element of order 2 .

Proof:

Let $e \neq g \in G$. If $|g|=8$, then $\left|g^{4}\right|=2$. If $|g|=4$, then $\left|g^{2}\right|=2$.

