Problem Set 6

Directions: Work all of the following problems.

1. Prove or Disprove that $U(20)$ and $U(24)$ are isomorphic.
2. Let $G=\{a+b \sqrt{2} \mid a, b$ rational $\}$ and $H=\left\{\left.\left[\begin{array}{cc}a & 2 b \\ b & a\end{array}\right] \right\rvert\, a, b\right.$ rational $\}$. Show that G and H are isomorphic under addition. Does your isomorphism preserve multiplication as well?
3. Let $R^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right) \mid a_{i} \in R\right\}$. Show that the mapping $\phi:\left(a_{1}, a_{2}, \ldots, a_{n}\right) \rightarrow\left(-a_{1},-a_{2}, \ldots .,-a_{n}\right)$ is an automorphism of the group R^{n} under componentwise addition. Describe the action of the inversion, ϕ, geometrically.
4. Let $G=\{0, \pm 2, \pm 4, \pm 6, \ldots\}$ and $H=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$. Show that G and H are isomorphic groups under addition. Generalize the case when $G=\langle m\rangle$ and $H=\langle n\rangle$.
5. Show that every automorphism ϕ of the rational numbers Q under addition to itself has the form $\phi(x)=x \phi(1)$.
6. Let n be a positive integer. Let $H=\{0, \pm n, \pm 2 n, \pm 3 n, \ldots\}$. Find all left cosets of H in Z . How many are there?
7. Suppose that a has order 15. Find all of the left cosets of $\left\langle a^{5}\right\rangle$ in $\langle a\rangle$.
8. Let C^{*} be the group of nonzero complex numbers under multiplication and let $H=\left\{a+b i \in C^{*} \mid a^{2}+b^{2}=1\right\}$. Give a geometric description of the $\operatorname{coset}(c+d i) H$.
9. Suppose that K is a proper subgroup of H and H is a proper subgroup of G . If $|K|=42$ and $|G|=420$, what are the possible orders of H ?
10. Prove that the order of $U(n)$ is even when $n>2$.
11. Suppose $|G|=8$. Show that G must have an element of order 2 .
