Problem Set 5 - Solutions

Directions: Work all of the following problems.

1. How many elements of order 5 are in s_{7} ? You must justify your answer.

Solution:

An element of order 5 in s_{7} takes the form $\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right)$. Now there are $P(7,5)=21$ ways to do this. However, any rotation of such an element is the same [i.e. $\left(a_{2} a_{3} a_{4} a_{5} a_{1}\right)$ is one such rotation]. Since there are 5 such rotations for each, we can see that there are $\frac{P(7,5)}{5}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}{5}=504$ such ways.

QED

2. Prove that (1234) is not the product of 3 -cycles.

Proof:

Since is odd and any product of three-cycles is even, we see that this cannot happen. (Recall: a permutation's parity is independent of its representation).

QED
3. Let $\beta=(123)(145)$. Write β^{99} in disjoint cycle form.

Solution:

First, the order of β is $\mathbf{5}$, so $\beta^{5}=e$. Also, $(123)(145)=(14523)$.

So, $\quad \beta^{99}=\left(\beta^{5}\right)^{20} B^{-1}=e^{20} B^{-1}=e B^{-1}=\beta^{-1}=(32541)$
QED
4. Let $\beta=(1,3,5,7,9,8,6)(2,4,10)$. What is the smallest positive integer n for which $\beta^{n}=\beta^{-5}$? You must justify your work.

Solution:

Since $|\beta|=\operatorname{LCM}(7,3)=21$, we know that $B^{21}=e$. So, $B^{-5}=B^{21} \cdot B^{-26}=e \cdot B^{-26}=B^{-26}=B^{5}=B^{16}$. So, $n=16$.

QED

5.

a. Let $H=\left\{\beta \in S_{5} \mid \beta(1)=1\right.$ and $\left.\beta(3)=3\right\}$. Prove that H is a subgroup of s_{5}.
b. How many elements are in H ? Is your argument valid in S_{n} for any n? How many elements are in H in this case?

Solution:

(a)

Let $H=\left\{\beta \in S_{5} \mid \beta(1)=1\right.$ and $\left.\beta(3)=3\right\}$
Let $\beta, \gamma \in H$. Then, $\beta \gamma(1)=\beta(\gamma(1))=\beta(1)=1$ and $\beta \gamma(3)=\beta(\gamma(3))=\beta(3)=3$.
Thus, H closed. So, by the finite subgroup test, H is a subgroup of s_{5}.
(b)

Since β fixers 1 and 3, we see that we have to permute three other elements. This can be done in $3!=6$ ways. So, $|H|=6$. This proof is valid for all $n \geq 3$ and in general, $|H|=(n-2)$! since the image of exactly two elements is pre-determined.
6. Find an isomorphism from the group of integers under addition to the group of even integers under addition.

Solution:

Let $\phi(n)=2 n$. Now, ϕ is onto since for all n in the set of even integers, we have $\frac{n}{2} \in Z$ maps to it. ϕ is one-to-one since $\phi(m)=\phi(n)$ implies $2 m=2 n$, or $m=n$. Lastly, ϕ is operation preserving since $\phi(m+n)=2(m+n)=2 m+2 n=\phi(m)+\phi(n)$. Thus, ϕ an automorphism.
7. Let R^{+}be the group of positive real numbers under multiplication. Show that the mapping $\phi(x)=\sqrt{x}$ is an automorphism of R^{+}.

Proof:

Let $\phi(x)=\sqrt{x}$ be a mapping from R^{+}to R^{+}. Now, ϕ is onto since $\phi^{-1}(n)=n^{2}$ for all n in the positive Real numbers. That is, $\phi\left(n^{2}\right)=\sqrt{n^{2}}=|n|=n . \phi$ is one-to-one since $\phi(a)=\phi(b)$ implies $\sqrt{a}=\sqrt{b}$, or simply $a=b$ (by squaring both sides). Finally, ϕ is operation preserving since $\phi(a b)=\sqrt{a b}=\sqrt{a} \sqrt{b}=\phi(a) \phi(b) \forall a, b \in R^{+}$. Thus, ϕ an automorphism from R^{+}to R^{+}.
8. Show that $U(8)$ is not isomorphic to $U(10)$.

Proof:

$U(10)$ is cyclic, but $U(8)$ is not.
9. Show that $U(8)$ is isomorphic to $U(12)$.

Proof:

Define ϕ from $U(8)$ to $U(12)$ by $\phi(1)=1, \phi(3)=5, \phi(5)=7, \phi(7)=11$. This map is clearly a bijection. To see that ϕ is operation-preserving, observe that:

$$
\begin{aligned}
& \phi(1 \cdot a)=\phi(a)=\phi(a) \cdot 1=\phi(a) \phi(1)=\phi(1) \phi(a) \\
& \phi(3 \cdot 5)=\phi(7)=11=5 \cdot 7=\phi(3) \phi(5) \\
& \phi(3 \cdot 7)=\phi(5)=7=5 \cdot 11=\phi(3) \phi(7) \\
& \phi(3 \cdot 7)=\phi(5)=7=5 \cdot 11=\phi(3) \phi(7) \text { and } \\
& \phi(5 \cdot 7)=\phi(3)=5=7 \cdot 11=\phi(5) \phi(7)
\end{aligned}
$$

So, the above with the fact that $U(n)$ is abelian shows that $\phi(a b)=\phi(a) \phi(b) \forall a, b \in U(8)$.
10. Show that the mapping $a \rightarrow \log _{10} a$ is an isomorphism from R^{+}under multiplication to R under addition.

Proof:
Suppose $\phi:\left(R^{+}, \cdot\right) \rightarrow(R,+)$ by $\phi(x)=\log _{10}(x)$. Clearly ϕ is a bijection due to properties of real numbers. Now, ϕ is operation preserving since
$\phi(a b)=\log _{10}(a b)=\log _{10}(a)+\log _{10}(b)=\phi(a)+\phi(b)$.
11. Let G be a group. Prove that the mapping $\alpha(g)=g^{-1}$ for all $g \in G$ is an automorphism if and only if G is abelian.

Proof:

Suppose $\alpha(g)=g^{-1}$ is an automorphism on G. Then $\alpha(g h)=(g h)^{-1}$.
(\rightarrow)
Suppose G an automorphism. Then, $\alpha(g h)=\alpha(g) \alpha(h)=g^{-1} h^{-1} \forall g, h \in G$. So, $h^{-1} g^{-1}=(g h)^{-1}=\alpha(g h)=g^{-1} h^{-1}$ (the last equality follows from above).

So, we have $h^{-1} g^{-1}=g^{-1} h^{-1}$. Taking the inverse of both sides, we obtain $(g h)^{-1}=(h g)^{-1}$ and we have established that $g h=h g \forall g, h \in G$ (since inverses are unique).
(\leftarrow)
Suppose G is abelian. Then for all $g, h \in G$, we have
$\alpha(g h)=(g h)^{-1}=h^{-1} g^{-1}=\alpha(h) \alpha(g)=\alpha(g) \alpha(h)$.
Thus, α an automorphism iff G abelian.
QED
12. Suppose that $\phi: Z_{50} \rightarrow Z_{50}$ is an automorphism with $\phi(11)=13$. Find a formula for $\phi(x)$.

Proof:

Since $13=\phi(11)=\phi(1+1+\ldots+1)=\phi(1)+\phi(1) \ldots+\phi(1)=11 \phi(1)$, we have that.
$\phi(1)=11^{-1} \cdot 13=41 \cdot 13=33$ (Note: We can find $11^{-1}(\bmod 50)$ by using the Euclidean
Algorithm). So, $\phi(x)=\phi(1 \cdot x)=\phi(1) \cdot \phi(x)=33 x$. So, $\phi(x)=33 x$.
[Note: We can check to see that $\phi(11)=33 \cdot 11=363=13$]

