MAS 4300: Abstract Algebra

Broward College

Problem Set 5 - Solutions

Directions: Work all of the following problems.

1. How many elements of order 5 are in s_7 ? You must justify your answer.

Solution:

An element of order 5 in s_7 takes the form $(a_1a_2a_3a_4a_5)$. Now there are P(7,5) = 21 ways to do this. However, any rotation of such an element is the same $[i.e. (a_2a_3a_4a_5a_1)$ is one such rotation]. Since there are 5 such rotations for each, we can see that there are $\frac{P(7,5)}{5} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}{5} = 504$ such ways.

- 2. Prove that (1234) is not the product of 3-cycles.

Proof:

Since is odd and any product of three-cycles is even, we see that this cannot happen. (Recall: a permutation's parity is independent of its representation).

QED

QED

3. Let $\beta = (123)(145)$. Write β^{99} in disjoint cycle form.

Solution:

First, the order of β is 5, so $\beta^5 = e$. Also, (123)(145) = (14523)

So,
$$\beta^{99} = (\beta^5)^{20} B^{-1} = e^{20} B^{-1} = e^{B^{-1}} = \beta^{-1} = (32541)$$
. QED

4. Let $\beta = (1,3,5,7,9,8,6)(2,4,10)$. What is the smallest positive integer n for which $\beta^n = \beta^{-5}$? You must justify your work.

Solution:

Since
$$|\beta| = \text{LCM}(7,3) = 21$$
, we know that $B^{21} = e$. So,
 $B^{-5} = B^{21} \cdot B^{-26} = e \cdot B^{-26} = B^{-26} = B^5 = B^{16}$. So, $n = 16$.

QED

- 5.
- a. Let $H = \{\beta \in S_5 \mid \beta(1) = 1 \text{ and } \beta(3) = 3\}$. Prove that H is a subgroup of s_5 .
- b. How many elements are in H? Is your argument valid in S_n for any n? How many elements are in H in this case?

Solution:

(a)

Let
$$H = \{\beta \in S_5 \mid \beta(1) = 1 \text{ and } \beta(3) = 3\}$$

Let $\beta, \gamma \in H$. Then, $\beta\gamma(1) = \beta(\gamma(1)) = \beta(1) = 1$ and $\beta\gamma(3) = \beta(\gamma(3)) = \beta(3) = 3$.
Thus, H closed. So, by the finite subgroup test, H is a subgroup of s_5 .

(b)

Since β fixers 1 and 3, we see that we have to permute three other elements. This can be done in 3!=6 ways. So, |H|=6. This proof is valid for all $n \ge 3$ and in general, |H|=(n-2)! since the image of exactly two elements is pre-determined.

QED

6. Find an isomorphism from the group of integers under addition to the group of even integers under addition.

Solution:

Let $\phi(n) = 2n$. Now, ϕ is onto since for all n in the set of even integers, we have $\frac{n}{2} \in Z$ maps to it. ϕ is one-to-one since $\phi(m) = \phi(n)$ implies 2m = 2n, or m = n. Lastly, ϕ is operation preserving since $\phi(m+n) = 2(m+n) = 2m+2n = \phi(m)+\phi(n)$. Thus, ϕ an automorphism.

QED

7. Let R^+ be the group of positive real numbers under multiplication. Show that the mapping $\phi(x) = \sqrt{x}$ is an automorphism of R^+ .

Proof:

Let $\phi(x) = \sqrt{x}$ be a mapping from R^+ to R^+ . Now, ϕ is onto since $\phi^{-1}(n) = n^2$ for all n in the positive Real numbers. That is, $\phi(n^2) = \sqrt{n^2} = |n| = n$. ϕ is one-to-one since $\phi(a) = \phi(b)$ implies $\sqrt{a} = \sqrt{b}$, or simply a = b (by squaring both sides). Finally, ϕ is operation preserving since $\phi(ab) = \sqrt{ab} = \sqrt{a}\sqrt{b} = \phi(a)\phi(b) \quad \forall a, b \in R^+$. Thus, ϕ an automorphism from R^+ to R^+ .

റ	L.	n
V	Υ.	υ

8. Show that U(8) is not isomorphic to U(10).

Proof:

U(10) is cyclic, but U(8) is not.

QED

9. Show that U(8) is isomorphic to U(12).

Proof:

Define ϕ from U(8) to U(12) by $\phi(1) = 1, \phi(3) = 5, \phi(5) = 7, \phi(7) = 11$. This map is clearly a bijection. To see that ϕ is operation-preserving, observe that:

$$\phi(1 \cdot a) = \phi(a) = \phi(a) \cdot 1 = \phi(a)\phi(1) = \phi(1)\phi(a)$$

$$\phi(3 \cdot 5) = \phi(7) = 11 = 5 \cdot 7 = \phi(3)\phi(5)$$

$$\phi(3 \cdot 7) = \phi(5) = 7 = 5 \cdot 11 = \phi(3)\phi(7)$$

$$\phi(3 \cdot 7) = \phi(5) = 7 = 5 \cdot 11 = \phi(3)\phi(7) \text{ and}$$

$$\phi(5 \cdot 7) = \phi(3) = 5 = 7 \cdot 11 = \phi(5)\phi(7)$$

So, the above with the fact that U(n) is abelian shows that

$$\phi(ab) = \phi(a)\phi(b) \forall a, b \in U(8).$$

QED

10. Show that the mapping $a \rightarrow \log_{10} a$ is an isomorphism from R^+ under multiplication to R under addition.

Proof:

Suppose $\phi: (R^+, \cdot) \to (R, +)$ by $\phi(x) = \log_{10}(x)$. Clearly ϕ is a bijection due to

properties of real numbers. Now, ϕ is operation preserving since

 $\phi(ab) = \log_{10}(ab) = \log_{10}(a) + \log_{10}(b) = \phi(a) + \phi(b).$

0	E	D
v		~

11. Let G be a group. Prove that the mapping $\alpha(g) = g^{-1}$ for all $g \in G$ is an automorphism if and only if G is abelian.

Proof:

Suppose $\alpha(g) = g^{-1}$ is an automorphism on G. Then $\alpha(gh) = (gh)^{-1}$.

 (\rightarrow)

Suppose G an automorphism. Then, $\alpha(gh) = \alpha(g)\alpha(h) = g^{-1}h^{-1} \forall g, h \in G$. So,

$$h^{-1}g^{-1} = (gh)^{-1} = \alpha(gh) = g^{-1}h^{-1}$$
 (the last equality follows from above).

So, we have $h^{-1}g^{-1} = g^{-1}h^{-1}$. Taking the inverse of both sides, we obtain

 $(gh)^{-1} = (hg)^{-1}$ and we have established that $gh = hg \forall g, h \in G$ (since inverses are unique).

(←)

Suppose G is abelian. Then for all $g, h \in G$, we have $\alpha(gh) = (gh)^{-1} = h^{-1}g^{-1} = \alpha(h)\alpha(g) = \alpha(g)\alpha(h).$

Thus, α an automorphism iff G abelian.

QED

12. Suppose that $\phi: Z_{50} \to Z_{50}$ is an automorphism with $\phi(11) = 13$. Find a formula for $\phi(x)$.

Proof:

Since
$$13 = \phi(11) = \phi(1+1+...+1) = \phi(1) + \phi(1) + \phi(1) = 11\phi(1)$$
, we have that .

 $\phi(1) = 11^{-1} \cdot 13 = 41 \cdot 13 = 33$ (Note: We can find $11^{-1} \pmod{50}$ by using the Euclidean Algorithm). So, $\phi(x) = \phi(1 \cdot x) = \phi(1) \cdot \phi(x) = 33x$. So, $\phi(x) = 33x$.

[Note: We can check to see that $\phi(11) = 33 \cdot 11 = 363 = 13$]

QED