Problem Set 5

Directions: Work all of the following problems.

1. How many elements of order 5 are in s_{7} ? You must justify your answer.
2. Prove that (1234) is not the product of 3 -cycles.
3. Let $\beta=(123)(145)$. Write β^{99} in disjoint cycle form.
4. Let $\beta=(1,3,5,7,9,8,6)(2,4,10)$. What is the smallest positive integer n for which $\beta^{n}=\beta^{-5}$? You must justify your work.
5.

a. Let $H=\left\{\beta \in S_{5} \mid \beta(1)=1\right.$ and $\left.\beta(3)=3\right\}$. Prove that H is a subgroup of s_{5}.
b. How many elements are in H ? Is your argument valid in S_{n} for any n? How many elements are in H in this case?
6. Find an isomorphism from the group of integers under addition to the group of even integers under addition.
7. Let R^{+}be the group of positive real numbers under multiplication. Show that the mapping $\phi(x)=\sqrt{x}$ is an automorphism of R^{+}.
8. Show that $U(8)$ is not isomorphic to $U(10)$.
9. Show that $U(8)$ is isomorphic to $U(12)$.

> (Cont.)
10. Show that the mapping $a \rightarrow \log _{10} a$ is an isomorphism from R^{+}under multiplication to R under addition.
11. Let G be a group. Prove that the mapping $\alpha(g)=g^{-1}$ for all $g \in G$ is an automorphism if and only if G is abelian.
12. Suppose that $\phi: Z_{50} \rightarrow Z_{50}$ is an automorphism with $\phi(11)=13$. Find a formula for $\phi(x)$.

