Homework Assignment \# 5-Solutions

1. Find all the generators of Z_{6}, Z_{8}, and Z_{20}.

Solution:
$Z_{6}=\langle 1\rangle=\langle 5\rangle$
$Z_{8}=\langle 1\rangle=\langle 3\rangle=\langle 5\rangle=\langle 7\rangle$
$Z_{20}=\langle 1\rangle=\langle 3\rangle=\langle 7\rangle=\langle 9\rangle=\langle 11\rangle=\langle 13\rangle=\langle 17\rangle=\langle 19\rangle$
Notice that the group is generated by elements relatively prime to n !
QED
2. Suppose that a cyclic group G has exactly three subgroups: G itself, $\{e\}$, and a subgroup of order 7. What is $|G|$? What can you say if 7 were replaced by p , where p is a prime?

Solution:
(a)

First, note that G is not infinite since an infinite cyclic group has infinitely many subgroups. Now, since G has exactly 3 subgroups of orders 7,1 , and 7 respectively and the divisors of 49 are 1,7 , and 49 , clearly $|G|=7^{2}=49$.

As a check, you can see that we have the trivial subgroup, a subgroup of order 7 , and the entire group itself (order 49).
(b)

In general, $|G|=p^{2}$ (Examine the pattern in part (a)).
3. Prove that Z_{n} has an even number of generators if $n>2$.

Proof:
If g a generator of z_{n}, then $\left\{g^{k} \mid k \in Z\right\}=G$. Clearly, $g^{-1}=-g$ is also a generator for Z_{n}. So, for any $g \in G$ such that $G=\langle g\rangle, G=\left\langle g^{-1}\right\rangle$ as well. So, we conclude that non-trivial generators come in pairs. We note that the identity is the only generator such that $g^{2}=e$ (i.e. its own inverse) since if $g \neq e$, we have $g^{-1}=-g=n-g$. Thus, for $n>2, Z_{n}$ has an even number of generators.

QED
4. Show $Z_{2^{2002}}$ has no subgroup of order 3^{k} for any $k \geq 1$.

Proof:
$\left|Z_{2^{2002}}\right|=2^{2002}$. Now if H a subgroup of $Z_{2^{2002}}$, then $|H|$ divides 2^{2002}. But, 3^{k} does not divide $2^{2002} \forall k$ since 2 and 3 are distinct primes (i.e. Fund. thm. of arithmatic.).

Thus, there exists no subgroup of order 3^{k} for any k.
5. Let $H=\left\{\left.\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right] \right\rvert\, n \in Z\right\}$. Show that H is a cyclic subgroup of $\operatorname{GL}(2, R)$.
(Hint: You must first show that H is a subgroup and then show H cyclic.)
Proof:
Take $x, y \in H$. Then, $x=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right], y=\left[\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right]$, and $m, n \in Z$. Now, $x y^{-1}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -m \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & n-m \\ 0 & 1\end{array}\right]$. Since $n-m \in Z$, we see that $x y^{-1} \in H$. Thus H a subgroup of $G L(2, R)$.
5. (Cont.)

Proof (Cont.):
Now, to show that H is cyclic, notice that $H=\left\langle\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\rangle$, since $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$.

So, H is a cyclic subgroup of $G L(2, R)$.

