Broward College

Problem Set 2 - Solutions

1. Let x and y be elements of order 2 in any group. Prove that if t = xy then $tx = xt^{-1}$.

Proof: Suppose $x, y \in G$, |x| = |y| = 2, and t = xy. Thus $x^2 = e$, $y^2 = e$, and $x, y \neq e$ (By Def.). In other words, x and y are their own inverses. Now,

$$tx = xyx = xy^{-1}x^{-1} = x(y^{-1}x^{-1}) = x(xy)^{-1} = xt^{-1}$$
 QED

2. Suppose $G = \langle a \rangle$. Show $G = \langle a^{-1} \rangle$.

Proof: By definition, $G = \langle a \rangle$ implies that $G = \{a^n \mid a \in Z\}$. Since $(a^{-1})^{-1} = a$, any element of the form a^n can be written as $a^{-1-n} = (a^{-1})^{-n}$. Clearly, since $n \in Z$, $-n \in Z$. As a result, we can see that every element in G can be written as a power of a^{-1} . In other words, a^{-1} is a generator for G, or $G = \langle a^{-1} \rangle$. QED

3. Find all generators of Z_6 and Z_8 .

Solution: the generators of Z_6 are 1 and 5. We can see that 1 is a generator because

$$\langle 1 \rangle = \{ 1^n \mid n \in Z \} = Z_6 = G.$$
 Here $1^0 = e, 1^1 = 1(1) = 1, 1^2 = 1(2) = 2, \dots 1^5 = 1(5) = 5, \text{ so} \}$

 $\langle 1 \rangle = \{0, 1, 2, 3, 4, 5\} = Z_6 = G$, (Note: In such an additive group, $g^0 = g(0) = 0 = e$) Clearly since G is Cyclic, all other powers of g are just the same as one of those in z_6

Similarly, we can show that 5 generates G because, $\langle 5 \rangle = \{5^n \mid n \in Z\} = \{5^0, 5^1, 5^2, 5^3, 5^4, 5^5\} = \{0, 5, 25, 15, 20, 125\} = \{0, 5, 1, 3, 2, 4\} = Z_6 = G.$ You should also verify that $\langle n \rangle \neq G \forall n \in G, n \neq 1, 5!$ We can similarly find the generators in $G = Z_8 = (Z_{8,} +)$ to be 1,3,5,and 7. You can see that this process is quite tedious. *However, we will prove later that all the generators of*

 $G = (Z_n, +) = Z_n$ (Additive group understood since n not neccessarily prime!) *are those elements that are relatively prime to n.*

4. Show in
$$G = (Z_n, +)$$
, for any $x \in G$, $|x| = |n - x|$.

Proof: Take x arbitrary from G. Then, $x + (n - x) = n \equiv 0$. So,

$$x^{-1} = n - x \equiv -x \pmod{n}$$

Recall that in any group, $|x| = |x^{-1}|$ (See Thm, in text/Proved in class notes). Thus,

$$|x| = |n - x| \quad . \tag{QED}$$

5. Suppose G a group and $a \in G$. Show that if a has infinite order in G, then $a^m \neq a^n$ whenever $m \neq n$.

Proof: Assume $a^m = a^n$ and without loss of generality (WLOG) suppose m < n. Then $e = a^n a^{-m} = a^{n-m}$, which contradicts the definition of infinite order. So, if a has infinite order in G, then $a^m \neq a^n$ whenever $m \neq n$.

6. Let G be a group and let $a \in G$. Prove that $C(a) = C(a^{-1})$.

Proof: Suppose $x \in C(a)$. Then, $xa = ax \ \forall x \in G$. So, $a^{-1}(xa) = a^{-1}(ax) = x$. Thus, $(a^{-1}x)a = x$ and therefore $a^{-1}x = xa^{-1} \ \forall x \in G$. This shows that $x \in C(a^{-1})$. Thus, $C(a) \subseteq C(a^{-1})$. By symmetry, we can show $C(a^{-1}) \subseteq C(a)$. Thus $C(a) = C(a^{-1})$. QED

QED

7. Prove that and abelian group with two elements of order 2 must have a subgroup of order 4. **Proof:** Let G be such a group. Further suppose that for $a, b \in G$, |a| = 2 and |b| = 2.

The set $H = \{e, a, b, ab\}$ is *closed* (Note: e is guaranteed in G and a, b have the given properties by assumption. So, we can place them in H). H need only be *closed* to verify that H is a subgroup of G since H is finite (See the finite subgroup test).

QED

8. Prove that if G an Abelian Group with identity e, then $H = \{x \mid x \in G \text{ and } x^n = e\} \leq G$

(Recall, in the special case when n = 2, we did not require abelian!)

Proof: We will prove this by the two-step subgroup test (more convenient than the one-Step !). Let $H = \{x \in G \mid x^n = e\}$. Since $e^1 = e$, we have $e \in H$ and H non-empty. Now, let $a, b \in H$. Then, $a^n = e$ and $b^n = e$. So since G abelian, we have $(ab)^n = a^n b^n = ee = e$. So, $ab \in H$ and H closed. To show inverses exist in H, again

take $a \in H$. Since $a \in H$, we have $a^n = e$. Taking inverses of both sides, we obtain $(a^n)^{-1} = e^{-1} = e$. Since $(a^n)^{-1} = (a^{-1})^n$, we have $(a^{-1})^n = e$. It follows that $a^{-1} \in H$ and we have established inverses. So, since $H \subseteq G$ is closed and obeys the inverse property, we have $H \leq G$ by the two-step subgroup test.

QED

9. Find the center of D_4 , the dihedral group of order 8. Justify your answer.

Solution: By example 11 (p. 63) of the text, we have $Z(D_4) = \{R_0, R_{180}\}$ since n is even.

QED