MAS 4300: Abstract Algebra Broward College

Problem Set 2 - Solutions

1. Let xand y be elements of order 2 in any group. Prove that if t = xy then tx = xt™.

Proof: Suppose x,yeG,|X=|y|=2,and t=xy. Thus x* =e, y*=e, andx,y =e (By
Def.). In other words, x and y are their own inverses. Now,

tx=xyx =xy x*= x(y’lx’l) = x(xy)_1 =xt* QED

Suppose G=(a). Show G=(a™)

Proof: By definition, G =(a) implies that G={a"|aZ} Since (a‘l)_l =a,any
element of the form a" can be written as a™*™" = (afl)fn Clearly, since neZ, -neZ
As a result, we can see that every element in G can be W.ritten as a power of a™ In otlher
words, a'is a generator for G, or G = <a‘l> |

QED

3. Find all generators of Z, and Z,

Solution: the generators of Z,are 1 and 5. We can see that 1 is a generator because

(={1"Inez}=2Z,=G. Here 1°=¢,I' =1(1) =1,1° =1(2) = 2,...1° =1(5) =5, SO

(1)={0,1,2,3,4,5} =Z, =G, (Note: In such an additive group, g° =g(0)=0=e)
Clearly since G is Cyclic, all other powers of g are just the same as one of those in z,

Similarly, we can show that 5 generates G because,
(5)={5"Inez}={5"5"5"5"5"5"}={0,5,2515,20,125} ={0,5,1,3,2,4} = Z, =G.

You should also verify that (n)=G vV neG, n=15!
We can similarly find the generators in G =Z; =(Z, +) to be 1,3,5,and 7.



You can see that this process is quite tedious. However, we will prove later that all the
generators of

G= (Zn,+) =Z, (Additive group understood since n not neccessarily prime!) are those
elements that are relatively prime to n.

QED
4. Showin G=(Z,,+), forany xeG, |x|=|n—x|.

Proof: Take x arbitrary from G. Then, x+(n—x)=n=0. So,

xt=n—x=-x (modn)

Recall that in any group, |x| = ‘x‘l‘ (See Thm, in text/Proved in class notes). Thus,

|x|:|n—x| . QED

5. Suppose G agroup and a e G . Show that if a has infinite order in G, then a™ =a" whenever
m=n.

Proof: Assume a™ =a" and without loss of generality (WLOG) suppose m<n. Then

nq—m

e=a"a ™ =a"", which contradicts the definition of infinite order. So, if a has infinite

order in G, then a™ =a" whenever m=n.

QED

6. Let G beagroup andlet acG . Prove that C(a)=C(a™).

Proof: Suppose xeC(a). Then, xa=ax VxeG. So, a™*(xa)=a"(ax)=x. Thus,

(a”x)a=x and therefore a'x=xa™" ¥xeG. This shows that xeC(a™). Thus,

C(a)cC(a™). By symmetry, we canshow C(a™*)<=C(a). Thus C(a)=C(a™).
QED



7. Prove that and abelian group with two elements of order 2 must have a subgroup of order 4.

Proof: Let G be such a group. Further suppose that for a,beG, |a|=2and |b|=2.

Theset H = {e, a,b, ab} is closed (Note: e is guaranteed in G and a, b have the

given properties by assumption. So, we can place them in H). H need only be
closed to verify that H is a subgroup of G since H is finite (See the finite sub-

group test).

QED

8. Prove that if G an Abelian Group with identity e, then H ={x|xeG and X" =e}<G

(Recall, in the special case when n =2, we did not require abelian!)

Proof: We will prove this by the two-step subgroup test (more convenient than the one-

Step!). Let H I{XEG | x" :e}. Since e' =e, we have e e H and H non-empty. Now,

let a,beH. Then, a" =eandb" =e. So since G abelian, we have

(ab)"=a'h"=ee=e. 5o abeH and H closed. To show inverses exist in H, again

take acH - Since acH, wehavea" =e- Taking inverses of both sides, we obtain
(a" )il =e" =e- Since (a’ )71 = (afl)n » we have (a’l)n —e- Itfollows that a* e H

and we have established inverses. So, since H =G is closed and obeys the inverse
property, we have H <G by the two-step subgroup test.
QED



9. Find the center of D,, the dihedral group of order 8. Justify your answer.

Solution: By example 11 (p. 63) of the text, we have Z (D,)={R,, Ry, }since n is even.

QED



