Problem Set 2 - Solutions

1. Let x and y be elements of order 2 in any group. Prove that if $t=x y$ then $t x=x t^{-1}$.

Proof: Suppose $x, y \in G,|x|=|y|=2$, and $t=x y$. Thus $x^{2}=e, y^{2}=e$, and $\mathrm{x}, \mathrm{y} \neq \mathrm{e}$ (By Def.). In other words, x and y are their own inverses. Now,

$$
t x=x y x=x y^{-1} x^{-1}=x\left(y^{-1} x^{-1}\right)=x(x y)^{-1}=x t^{-1}
$$

2. Suppose $G=\langle a\rangle$. Show $G=\left\langle a^{-1}\right\rangle$.

Proof: By definition, $G=\langle a\rangle$ implies that $G=\left\{a^{n} \mid a \in Z\right\}$. Since $\left(a^{-1}\right)^{-1}=a$, any element of the form a^{n} can be written as $a^{-1-n}=\left(a^{-1}\right)^{-n}$. Clearly, since $n \in Z,-\mathrm{n} \in \mathrm{Z}$. As a result, we can see that every element in G can be written as a power of a^{-1} In other words, a^{-1} is a generator for G , or $G=\left\langle a^{-1}\right\rangle$.
3. Find all generators of Z_{6} and Z_{8}.

Solution: the generators of Z_{6} are 1 and 5 . We can see that 1 is a generator because
$\langle 1\rangle=\left\{1^{n} \mid n \in Z\right\}=Z_{6}=G$. Here $1^{0}=e, 1^{1}=1(1)=1,1^{2}=1(2)=2, \ldots 1^{5}=1(5)=5$, so
$\langle 1\rangle=\{0,1,2,3,4,5\}=Z_{6}=G$, (Note: In such an additive group, $g^{0}=g(0)=0=e$)
Clearly since G is Cyclic, all other powers of g are just the same as one of those in z_{6}
Similarly, we can show that 5 generates G because,
$\langle 5\rangle=\left\{5^{n} \mid n \in Z\right\}=\left\{5^{0}, 5^{1}, 5^{2}, 5^{3}, 5^{4}, 5^{5}\right\}=\{0,5,25,15,20,125\} \equiv\{0,5,1,3,2,4\}=Z_{6}=G$.
You should also verify that $\langle n\rangle \neq G \forall \mathrm{n} \in \mathrm{G}, n \neq 1,5$!
We can similarly find the generators in $G=Z_{8}=\left(Z_{8,}+\right)$ to be $1,3,5$, and 7 .

You can see that this process is quite tedious. However, we will prove later that all the generators of
$G=\left(Z_{n},+\right)=Z_{n}$ (Additive group understood since n not neccessarily prime!) are those elements that are relatively prime to n.
4. Show in $G=\left(Z_{n},+\right)$, for any $x \in G,|x|=|n-x|$.

Proof: Take x arbitrary from G. Then, $x+(n-x)=n \equiv 0$. So,

$$
x^{-1}=n-x \equiv-x(\bmod n)
$$

Recall that in any group, $|x|=\left|x^{-1}\right|$ (See Thm, in text/Proved in class notes). Thus,

$$
|x|=|n-x| \text {. }
$$

5. Suppose G a group and $a \in G$. Show that if a has infinite order in G, then $a^{m} \neq a^{n}$ whenever $m \neq n$.

Proof: Assume $a^{m}=a^{n}$ and without loss of generality (WLOG) suppose $m<n$. Then $e=a^{n} a^{-m}=a^{n-m}$, which contradicts the definition of infinite order. So, if a has infinite order in G, then $a^{m} \neq a^{n}$ whenever $m \neq n$.
6. Let G be a group and let $a \in G$. Prove that $C(a)=C\left(a^{-1}\right)$.

Proof: Suppose $x \in C(a)$. Then, $x a=a x \forall x \in G$. So, $a^{-1}(x a)=a^{-1}(a x)=x$. Thus, $\left(a^{-1} x\right) a=x$ and therefore $a^{-1} x=x a^{-1} \forall x \in G$. This shows that $x \in C\left(a^{-1}\right)$. Thus, $C(a) \subseteq C\left(a^{-1}\right)$. By symmetry, we can show $C\left(a^{-1}\right) \subseteq C(a)$. Thus $C(a)=C\left(a^{-1}\right)$.
7. Prove that and abelian group with two elements of order 2 must have a subgroup of order 4 .

Proof: Let G be such a group. Further suppose that for $a, b \in G,|a|=2$ and $|b|=2$. The set $H=\{e, a, b, a b\}$ is closed (Note: e is guaranteed in G and a, b have the given properties by assumption. So, we can place them in H). H need only be closed to verify that H is a subgroup of G since H is finite (See the finite subgroup test).
8. Prove that if G an Abelian Group with identity e, then $H=\left\{x \mid x \in G\right.$ and $\left.x^{n}=e\right\} \leq G$

(Recall, in the special case when $n=2$, we did not require abelian!)

Proof: We will prove this by the two-step subgroup test (more convenient than the oneStep !). Let $H=\left\{x \in G \mid x^{n}=e\right\}$. Since $e^{1}=e$, we have $e \in H$ and H non-empty. Now, let $a, b \in H$. Then, $a^{n}=e$ and $b^{n}=e$. So since G abelian, we have $(a b)^{n}=a^{n} b^{n}=e e=e . \quad S o, a b \in H$ and H closed. To show inverses exist in H, again take $a \in H$. Since $a \in H$, we have $a^{n}=e$. Taking inverses of both sides, we obtain $\left(a^{n}\right)^{-1}=e^{-1}=e \cdot$ Since $\left(a^{n}\right)^{-1}=\left(a^{-1}\right)^{n}$, we have $\left(a^{-1}\right)^{n}=e \cdot$ It follows that $a^{-1} \in H$ and we have established inverses. So, since $H \subseteq G$ is closed and obeys the inverse property, we have $H \leq G$ by the two-step subgroup test.
9. Find the center of D_{4}, the dihedral group of order 8. Justify your answer.

Solution: By example 11 (p.63) of the text, we have $Z\left(D_{4}\right)=\left\{R_{0}, R_{180}\right\}$ since n is even.
QED

