Broward College

Problem Set 2

- 1. Let x and y be elements of order 2 in any group. Prove that if t = xy then $tx = xt^{-1}$.
- 2. Suppose $G = \langle a \rangle$. Show $G = \langle a^{-1} \rangle$
- 3. Find all generators of Z_6 and Z_8 .
- 4. Show in $G = (Z_n, +)$, for any $x \in G$, |x| = |n x|.
- 5. Suppose G a group and $a \in G$. Show that if a has infinite order in G, then $a^m \neq a^n$ whenever $m \neq n$.
- 6. Let G be a group and let $a \in G$. Prove that $C(a) = C(a^{-1})$.
- 7. Prove that and abelian group with two elements of order 2 must have a subgroup of order 4.
- 8. Prove that if G an Abelian Group with identity e, then $H = \{x \mid x \in G \text{ and } x^n = e\} \le G$ (Recall, in the special case when n = 2, we did not require abelian!)
- 9. Find the center of D_4 , the dihedral group of order 8. Justify your answer.