Broward College

Problem Set 1 Solutions

1. Show that GL(2, R) is non-abelian.

Solution:

Let $A = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} -2 & 5 \\ -3 & 0 \end{bmatrix}$. Clearly $A, B \in GL(2, R)$ since they have determinants that are non-zero. $AB = \begin{bmatrix} -11 & 5 \\ -1 & -5 \end{bmatrix}$ and $BA = \begin{bmatrix} -7 & * \\ * & * \end{bmatrix}$. Clearly $AB \neq BA \ \forall G \in GL(2, R)$. Thus, GL(2, R) is a non-abelian group.

* Note: Answers may vary for this problem

QED

2. Find the inverse of
$$A = \begin{bmatrix} 2 & 6 \\ 3 & 5 \end{bmatrix}$$
 in $GL(2, Z_{11})$.

Solution:

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $A^{-1} = (Det A)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. Note that $(Det (A))^{-1}$ plays the role of $\frac{1}{\det(A)}$, in the "Usual formula," that is easily verified. So, $Det (A) = -8 \equiv 3 \pmod{11}$.
So, $(Det(A))^{-1} = 3^{-1} \pmod{11} = 4$. So,
 $A^{-1} = 4 \begin{bmatrix} 5 & -6 \\ -3 & 2 \end{bmatrix} = 4 \begin{bmatrix} 5 & 5 \\ 8 & 2 \end{bmatrix} \pmod{11} = \begin{bmatrix} 20 & 20 \\ 32 & 8 \end{bmatrix} = \begin{bmatrix} 9 & 9 \\ 10 & 8 \end{bmatrix}$. One can easily verify that $AA^{-1} = A^{-1}A = e = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (using arithmetic modulo 11)

QED

3. Show that there exists at least two elements in the group G = U(n) that satisfy $x^2 = 1$.

Solution:

This is equivalent to proving that there exists two elements that are their own inverses (Note: for $x \in G = U(n) x^2 = 1$ means $x \cdot x = 1$, which means x is its own inverse!). Clearly the identity element, 1, works (as it is always its own inverse). We now need to find one more. Note that in mod n (don't forget the group operation is defined to be multiplication modulo n, $(n-1)^2 \equiv (-1)^2 = 1$. So, since $11^2 = (n-1)^2 = 1$, we have established that the group elements **1 and** (n-1)**satisfy the desired property.** [Note: there could be more, but we do not need to search because the problem was stated as find "At least two..."].

<u>Motivation</u>: We choose $1, (n-1) \in U(n)$ because if $x^2 = 1 \pmod{n}$, then $x = \pm 1 \pmod{n}$

and
$$-1 \equiv n - 1 \pmod{n}$$
.

QED

4. Let G be group such that b = c whenever ab = ca for all $a, b, c \in G$. Show G abelian.

Proof:

Suppose G a group with $a, b, c \in G$ and ab = ca implies b = c. Now, aba = aba. By associativity, a(ba) = (ab)a. Using the above hypothesis, we can conclude ba = ab. So, G is abelian.

QED

5. Prove: If in a group G, $\forall a, b \in G$, $(ab)^2 = a^2b^2$, then G is abelian.

Proof: Consider arbitrary $a, b \in G$. Then,

$\left(ab\right)^2 = a^2b^2$	Given
$(ab)(ab) = a^2b^2$	Definition of exponentiation
$a(ba)b = a^2b^2$	Associativity
$(ba)b = ab^2$	Left multiplication by a ⁻¹
ba = ab	Right multiplication by b ⁻¹

Thus, since $ab = ba \forall a, b \in G$, G is abelian.

QED

6. Consider $G = (Z_{10}, +_{10})$. What is the order of G? What are the orders of the elements 3 and 4

in G? That is, Find 3 and 4

Solution:

Consider the group $G = (Z_{10}, +_{10})$. The order of G is 10 since $G = \{0, 1, ..., n-1\}$. |3| = 10, since $3^{10} = 3 + 3 + 3 ... + 3 = 3(10) = 30 \equiv 0 \pmod{10} = e \in G$ (but \exists no n < 10 such that $3^n = e$).

[Note: the part in parentheses is important to note since it is part of the definition of the order of an element $g \in G$.]

Similarly, |4| = 5 since : $4^5 = 4(5) = 20 \equiv 0 = e \pmod{10}$, but $\exists \text{ no } n < 5$ such that $4^n = e (n \in \aleph)$.

Thus, |G| = 10, |3| = 10, |4| = 5, where $4, 5 \in G$

QED