Problem Set 1 Solutions

1. Show that $G L(2, R)$ is non-abelian.

Solution:

Let $A=\left[\begin{array}{cc}1 & 3 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{cc}-2 & 5 \\ -3 & 0\end{array}\right]$. Clearly $A, B \in G L(2, R)$ since they have determinants
that are non-zero. $A B=\left[\begin{array}{cc}-11 & 5 \\ -1 & -5\end{array}\right]$ and $B A=\left[\begin{array}{cc}-7 & * \\ * & *\end{array}\right]$. Clearly
$A B \neq B A \forall G \in G L(2, R)$. Thus, $G L(2, R)$ is a non-abelian group.

* Note: Answers may vary for this problem

QED
2. Find the inverse of $A=\left[\begin{array}{ll}2 & 6 \\ 3 & 5\end{array}\right]$ in $G L\left(2, Z_{11}\right)$.

Solution:

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=(\operatorname{Det} A)^{-1}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$. Note that $(\operatorname{Det}(A))^{-1}$ plays the role of
$\frac{1}{\operatorname{det}(A)}$, in the "Usual formula," that is easily verified. So, $\operatorname{Det}(A)=-8 \equiv 3(\bmod 11)$.
So, $(\operatorname{Det}(A))^{-1}=3^{-1}(\bmod 11)=4$. So,
$A^{-1}=4\left[\begin{array}{cc}5 & -6 \\ -3 & 2\end{array}\right]=4\left[\begin{array}{ll}5 & 5 \\ 8 & 2\end{array}\right](\bmod 11)=\left[\begin{array}{cc}20 & 20 \\ 32 & 8\end{array}\right]=\left[\begin{array}{cc}9 & 9 \\ 10 & 8\end{array}\right]$. One can easily verify
that $A A^{-1}=A^{-1} A=e=I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (using arithmetic modulo 11)
3. Show that there exists at least two elements in the group $G=U(n)$ that satisfy $x^{2}=1$.

Solution:

This is equivalent to proving that there exists two elements that are their own inverses (Note: for $x \in G=U(n) x^{2}=1$ means $x \cdot x=1$, which means x is its own inverse!). Clearly the identity element, 1 , works (as it is always its own inverse). We now need to find one more. Note that in $\bmod n$ (don't forget the group operation is defined to be multiplication modulo $\mathrm{n},(n-1)^{2} \equiv(-1)^{2}=1$. So, since $11^{2}=(n-1)^{2}=1$, we have established that the group elements 1 and $(n-1)$ satisfy the desired property. [Note: there could be more, but we do not need to search because the problem was stated as find "At least two..."].

Motivation: We choose $1,(n-1) \in U(n)$ because if $x^{2}=1(\bmod n)$, then $x= \pm 1(\bmod n)$

$$
\text { and }-1 \equiv n-1(\bmod n)
$$

4. Let G be group such that $b=c$ whenever $a b=c a$ for all $a, b, c \in G$. Show G abelian.

Proof:

Suppose G a group with $a, b, c \in G$ and $a b=c a$ implies $b=c$. Now, $a b a=a b a$. By associativity, $a(b a)=(a b) a$. Using the above hypothesis, we can conclude $b a=a b$. So, G is abelian.

QED
5. Prove: If in a group G, $\forall a, b \in G,(a b)^{2}=a^{2} b^{2}$, then G is abelian.

Proof: Consider arbitrary $a, b \in G$. Then,
$(a b)^{2}=a^{2} b^{2} \quad$ Given
$(a b)(a b)=a^{2} b^{2} \quad$ Definition of exponentiation
$a(b a) b=a^{2} b^{2} \quad$ Associativity
$(b a) b=a b^{2} \quad$ Left multiplication by a^{-1}
$b a=a b \quad$ Right multiplication by b^{-1}
Thus, since $a b=b a \forall a, b \in G, \mathrm{G}$ is abelian.
QED
6. Consider $G=\left(Z_{10},+_{10}\right)$. What is the order of G ? What are the orders of the elements 3 and 4 in G? That is, Find $|3|$ and $|4|$

Solution:

Consider the group $G=\left(Z_{10},+_{10}\right)$. The order of G is 10 since $G=\{0,1, \ldots, n-1\}$.
$|3|=10$, since $3^{10}=3+3+3 \ldots+3=3(10)=30 \equiv 0(\bmod 10)=e \in G($ but \exists no $n<10$ such that $3^{n}=e$).
[Note: the part in parentheses is important to note since it is part of the definition of the order of an element $g \in G$.]

Similarly, $|4|=5$ since :
$4^{5}=4(5)=20 \equiv 0=e(\bmod 10)$, but \exists no $n<5$ such that $4^{n}=e(n \in \aleph)$.

Thus, $|G|=10,|3|=10,|4|=5$, where $4,5 \in G$

