1. Show that $G L(2, R)=\{A \mid A$ is a square $2 \times 2$ matrix and $\operatorname{Det}(A) \neq 0\}$ is a non-abelian group by exhibiting a pair of matrices A and B in $G L(2, R)$ such that $A B \neq B A$.
2. Find the inverse of $\mathrm{A}=\left[\begin{array}{ll}2 & 6 \\ 3 & 5\end{array}\right]$ in $G L\left(2, Z_{11}\right)$.
3. For any integer $n>2$, show that there are at least two elements in the group $U(n)=\{x \mid x<n$ and $(x, n)=1\}$ that satisfy $x^{2}=1$ (i.e. at least two elements have their inverses being themselves).
4. Let G be a group with the property that whenever $a, b, c \in G$ and $a b=c a$, then $b=c$. Prove that G is abelian. (i.e. prove that cross cancellation in a group implies commutative!)
5. Prove: If G a group, $a, b \in G$, and $(a b)^{2}=a^{2} b^{2}$, then G abelian.
6. Consider the group $G=\left(Z_{10},+_{10}\right)$. What is $|G|$ (i.e. the order of $G$ ). Also, Find $|3|$ ( the order of the element 3 in $G$ ), and $|4|$ (the order of 4 in G).
