Union and Intersection of Intervals

p. 202 \#16: Find $(-4,0) \cap[-2,1]$.

[-2,1]:

To find the intersection, take the portion of the number line that the two graphs have in common.

p. 202 \#18: Find $(-4,0) \cup[-2,1]$.
$(-4,0):$

[-2,1]:

To find the union, take the portion of the number line that is in either graph.

$(-4,1]$
p. 202 \#20: Find $(-\infty, 6) \cap[2,9)$.

$[2,9):$

$[2,6)$
p. 202 \#22: Find $(-\infty, 6) \cup[2,9)$.

$[2,9):$

Linear Inequalities

Example: Solve $-7 x>28$.
Important: When you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality symbol.

Divide both sides by -7 to obtain $\frac{-7 \mathrm{x}}{-7}<\frac{28}{-7}$, which simplifies to $\mathrm{x}<-4$.

The solution set in interval notation is $(-\infty,-4)$.
p. 203 \#42: Solve $\frac{3 x}{10}+1 \geq \frac{1}{5}-\frac{x}{10}$.

Multiply both sides by 10 to clear the fractions to obtain $\mathbf{1 0} \cdot \frac{3 x}{10}+\mathbf{1 0} \cdot 1 \geq \mathbf{1 0} \cdot \frac{1}{5}-\mathbf{1 0} \cdot \frac{\mathrm{x}}{10}$.
Simplify to obtain $3 x+10 \geq 2-x$.
Add x to both sides to obtain $4 \mathrm{x}+10 \geq 2$.

Subtract 10 from both sides to obtain $4 \mathrm{x} \geq-8$.
Divide both sides by 4 to obtain $\mathrm{x} \geq-2$.

The solution set in interval notation is $[-2, \infty)$.
p. 203 \#48: Solve $3(x-8)-2(10-x)>5(x-1)$.

Distribute to obtain $3 x-24-20+2 x>5 x-5$.
Combine like terms to obtain: $5 x-44>5 x-5$.
Subtract 5 x from both sides to obtain $-44>-5$.
Since $-44>-5$ is always a false statement, that means there are no real numbers that make the original inequality true. Thus, the solution set is \varnothing (the empty set).

Important: If we had obtained $-44<-5$, which is always a true statement, that means every real number makes the original inequality true. Thus, the solution set in interval notation would be $(-\infty, \infty)$.

Compound Inequalities

Compound inequalities involve the word "or" or the word "and".
p. 203 \#56: Solve $3 \leq 4 x-3<19$.

Note that the given inequality is called a 3 part inequality.

We want to get x by itself in the middle part of the inequality.
Add 3 to each part of the inequality to obtain $\begin{array}{r}3 \leq 4 x-3<19 \\ +3 \\ +3\end{array}$, which simplifies to $6 \leq 4 x<22$.
Divide each part by 4 to obtain $\frac{6}{4} \leq \frac{4 x}{4}<\frac{22}{4}$, which simplifies to $\frac{3}{2} \leq x<\frac{11}{2}$.

This means that $\mathrm{x} \geq \frac{3}{2}$ and $\mathrm{x}<\frac{11}{2}$.

The solution set in interval notation is $\left[\frac{3}{2}, \frac{11}{2}\right)$.

