## Union and Intersection of Intervals

<u>p.202 #16</u>: Find  $(-4,0) \cap [-2,1]$ . To find the intersection, take the portion of the number line that the two graphs have in common. Answer: (-2,0)<u>p.202 #18</u>: Find  $(-4,0) \cup [-2,1]$ . To find the union, take the portion of the number line that is in either graph. Answer: (-4,1]p.202 #20: Find  $(-\infty, 6) \cap [2,9)$ .  $(-\infty,6)$ :  $(-\infty,$ Answer: (1 + 1) (2,6)



## Linear Inequalities

<u>Example</u>: Solve -7x > 28.

Important: When you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality symbol.

Divide both sides by -7 to obtain  $\frac{-7x}{-7} < \frac{28}{-7}$ , which simplifies to x < -4.

The solution set in interval notation is  $(-\infty, -4)$ .

p.203 #42: Solve 
$$\frac{3x}{10} + 1 \ge \frac{1}{5} - \frac{x}{10}$$

Multiply both sides by 10 to clear the fractions to obtain  $\mathbf{10} \cdot \frac{3x}{10} + \mathbf{10} \cdot 1 \ge \mathbf{10} \cdot \frac{1}{5} - \mathbf{10} \cdot \frac{x}{10}$ .

Simplify to obtain  $3x + 10 \ge 2 - x$ .

Add x to both sides to obtain  $4x + 10 \ge 2$ .

Subtract 10 from both sides to obtain  $4x \ge -8$ .

Divide both sides by 4 to obtain  $x \ge -2$ .



The solution set in interval notation is  $[-2,\infty)$ .

<u>p.203 #48</u>: Solve 3(x - 8) - 2(10 - x) > 5(x - 1).

Distribute to obtain 3x - 24 - 20 + 2x > 5x - 5.

Combine like terms to obtain: 5x - 44 > 5x - 5.

Subtract 5x from both sides to obtain -44 > -5.

Since -44 > -5 is always a false statement, that means there are no real numbers that make the original inequality true. Thus, the solution set is  $\bigcirc$  (the empty set).

Important: If we had obtained -44 < -5, which is always a true statement, that means every real number makes the original inequality true. Thus, the solution set in interval notation would be  $(-\infty,\infty)$ .

## **Compound Inequalities**

Compound inequalities involve the word "or" or the word "and".

<u>p.203 #56</u>: Solve  $3 \le 4x - 3 < 19$ .

Note that the given inequality is called a 3 part inequality.

We want to get x by itself in the middle part of the inequality.

Add 3 to each part of the inequality to obtain  $\begin{array}{c} 3 \leq 4x - 3 < 19 \\ +3 \qquad +3 \qquad +3 \end{array}$ , which simplifies to  $6 \leq 4x < 22$ .

Divide each part by 4 to obtain  $\frac{6}{4} \le \frac{4x}{4} < \frac{22}{4}$ , which simplifies to  $\frac{3}{2} \le x < \frac{11}{2}$ .

This means that 
$$x \ge \frac{3}{2}$$
 and  $x < \frac{11}{2}$ .  $< \underbrace{[} \\ \frac{3}{2} \\ \frac{3}{2} \\ \frac{11}{2} \\ \end{cases}$   
The solution set in interval notation is  $\underbrace{\left[\frac{3}{2}, \frac{11}{2}\right]}$ .