A function is one to one if each y-coordinate has exactly one x-coordinate. Every one to one function f has an inverse function, which is denoted by f^{-1}. The inverse is obtained by interchanging x and y and then solving for y .

Note: If both $\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{x}$ and $\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$, then f and g are inverses of each other.
Horizontal Line Test: If there is a horizontal line that crosses the graph of a function at more than one point, then the function is not one to one. Otherwise, the function is one to one.

Page 321-322 \#34, 32 Which graphs in Exercises 29-34 represent functions that have inverse functions?
34.

32.

Page 322 \#38 In Exercises 35-38, use the graph of f to draw the graph of its inverse function.
38.

Page 321 \#4 In Exercises 1-10, find $f(g(x))$ and $g(f(x))$ and determine whether each pair of functions f and g are inverses of each other.
4. $f(x)=4 x+9$ and $g(x)=\frac{x-9}{4}$

Page $321 \# 16$ a. Find an equation for $f^{-1}(x)$, the inverse function.
b. Verify that your equation is correct by showing that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
16. $f(x)=3 x-1$

Page 2 of 5

Page $321 \# 18 \quad$ a. Find an equation for $f^{-1}(x)$, the inverse function.
b. Verify that your equation is correct by showing that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
18. $f(x)=x^{3}-1$

Page $321 \# 42 \quad$ a. Find an equation for $f^{-1}(x)$.
b. Graph f and f^{-1} in the same rectangular coordinate system.
c. Use interval notation to give the domain and the range of f and f^{-1}.
42. $f(x)=x^{2}-1, x \leq 0$

-													
-													
-													
-													

Page $321 \# 49 \mathrm{a}$ a. Find an equation for $f^{-1}(x)$.
49. $f(x)=\sqrt{x-1}$

Page 321 \#51a a. Find an equation for $f^{-1}(x)$.
51. $f(x)=\sqrt[3]{x}+1$

