A function is <u>one to one</u> if each y-coordinate has exactly one x-coordinate. Every one to one function f has an <u>inverse function</u>, which is denoted by f^{-1} . The inverse is obtained by interchanging x and y and then solving for y.

Note: If both f(g(x)) = x and g(f(x)) = x, then f and g are inverses of each other.

Horizontal Line Test: If there is a horizontal line that crosses the graph of a function at more than one point, then the function is not one to one. Otherwise, the function is one to one.

Page 321-322 #34, 32 Which graphs in Exercises 29–34 represent functions that have inverse functions?

Page 322 #38 In Exercises 35–38, use the graph of f to draw the graph of its inverse function.

Page 321 #4 In Exercises 1–10, find f(g(x)) and g(f(x)) and determine whether each pair of functions f and g are inverses of each other.

4. f(x) = 4x + 9 and $g(x) = \frac{x - 9}{4}$

Page 321 #16 a. Find an equation for $f^{-1}(x)$, the inverse function. b. Verify that your equation is correct by showing that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

16. f(x) = 3x - 1

Page 321 #18
a. Find an equation for f⁻¹(x), the inverse function.
b. Verify that your equation is correct by showing that f(f⁻¹(x)) = x and f⁻¹(f(x)) = x.

18. $f(x) = x^3 - 1$

Page 321 #42 a. Find an equation for $f^{-1}(x)$.

b. Graph f and f⁻¹ in the same rectangular coordinate system.
c. Use interval notation to give the domain and the range of f and f⁻¹.

42. $f(x) = x^2 - 1, x \le 0$

<u> </u>		_			 		_	 				
\vdash												
	_	_			 						_	
				_								
			 				_	 				

Page 321 #49a **a.** Find an equation for $f^{-1}(x)$.

49. $f(x) = \sqrt{x-1}$

Page 321 #51a **a.** Find an equation for $f^{-1}(x)$.

51. $f(x) = \sqrt[3]{x} + 1$