More Domain Problems

- The denominator of a fraction cannot equal zero. Thus, any values that make a denominator zero are excluded from the domain.
- When finding the domain of a function, we are dealing with real numbers only. Thus, the radicand of a square root must be greater than or equal to zero.

Examples: Find the domain each of the following functions.

1. $f(x)=3 x^{2}-8 x+1$
2. $g(x)=\frac{x+5}{x^{2}+3 x+2}$
3. $h(x)=\sqrt{1-x}-9$
4. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}+3}{\sqrt{2 \mathrm{x}-5}}$
5. $f(x)=\frac{1}{x^{2}-9}+\frac{3}{x^{2}+4}$
6. $f(x)=\sqrt{x+1}-\sqrt{x-3}$
7. $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
8. $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$
9. $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})$
10. $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$

Example: Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}^{2}+\mathrm{x}-3$. Find $\mathrm{f}+\mathrm{g}, \mathrm{fg}, \frac{\mathrm{f}}{\mathrm{g}}$, and their domains.

Page $310 \# 45$: Let $f(x)=\frac{8 x}{x-2}$ and $g(x)=\frac{6}{x+3}$. Find $f-g, \frac{f}{g}$, and their domains.

Composition of Functions

$(f \circ g)(x)=f(g(x))$
$(g \circ f)(x)=g(f(x))$

Example: Let $f(x)=3 x-2$ and $g(x)=2 x^{2}-3 x+1$. Find $(f \circ g)(x),(g \circ f)(x),(f \circ g)(-1)$, and $(g \circ f)(2)$.

Page $310 \# 70$: Let $f(x)=\frac{x}{x+5}$ and $g(x)=\frac{6}{x}$. Find $(f \circ g)(x)$ and its domain.

