More Domain Problems

- The denominator of a fraction cannot equal zero. Thus, any values that make a denominator zero are excluded from the domain.
- When finding the domain of a function, we are dealing with real numbers only. Thus, the radicand of a square root must be greater than or equal to zero.

Examples: Find the domain each of the following functions.

1.
$$f(x) = 3x^2 - 8x + 1$$

2. $g(x) = \frac{x+5}{x^2 + 3x + 2}$
3. $h(x) = \sqrt{1-x} - 9$

4.
$$f(x) = \frac{x+3}{\sqrt{2x-5}}$$
 5. $f(x) = \frac{1}{x^2-9} + \frac{3}{x^2+4}$

6.
$$f(x) = \frac{5}{\frac{4}{x} + 2}$$
 7. $f(x) = \sqrt{x+1} - \sqrt{x-3}$

Basic Operations on Functions

- 1. (f+g)(x) = f(x) + g(x)
- 2. (f-g)(x) = f(x) g(x)
- 3. $(fg)(x) = f(x) \cdot g(x)$

$$4.\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Example: Let f(x) = 2x + 3 and $g(x) = 2x^2 + x - 3$. Find f + g, fg, $\frac{f}{g}$, and their domains.

<u>Page 310 #45</u>: Let $f(x) = \frac{8x}{x-2}$ and $g(x) = \frac{6}{x+3}$. Find f - g, $\frac{f}{g}$, and their domains.

Composition of Functions

 $(f \circ g)(x) = f(g(x))$

 $(g \circ f)(x) = g(f(x))$

<u>Example</u>: Let f(x) = 3x - 2 and $g(x) = 2x^2 - 3x + 1$. Find $(f \circ g)(x)$, $(g \circ f)(x)$, $(f \circ g)(-1)$, and $(g \circ f)(2)$.

<u>Page 310 #70</u>: Let $f(x) = \frac{x}{x+5}$ and $g(x) = \frac{6}{x}$. Find $(f \circ g)(x)$ and its domain.