Basic Functions

Transformations of Graphs

Equation	Effect on the basic graph $y = f(x)$	Remarks	
1. $y = f(x) + c, c > 0$	Shift <i>upward</i> c units.		
2. $y = f(x) - c, c > 0$	Shift <i>downward</i> c units.		
3. $y = f(x + c), c > 0$	Shift to the <i>left</i> c units.		
4. $y = f(x - c), c > 0$	Shift to the <i>right</i> c units.		
5. $y = -f(x)$	<i>Reflect</i> through the x-axis.	To reflect a graph through the x-axis, change the sign of each y-coordinate.	
6. $y = f(-x)$	<i>Reflect</i> through the y-axis.	To reflect a graph through the y-axis, change the sign of each x-coordinate.	
7. $y = c \cdot f(x)$	Multiply each y-coordinate by c.	If $0 < c < 1$, the graph of $y = f(x)$ is said to be vertically shrunk. If $c > 1$, the graph of $y = f(x)$ is said to be vertically stretched.	

Multi-Transformations of Graphs

1.	$y = a(x - h)^2 + k$	\Rightarrow	vertex = (h,k)	1. Horizontal shifting
2.	$y = a(x - h)^3 + k$	\Rightarrow	inflection point = (h,k)	2. Stretching or shrinking
3.	$y = a\sqrt{x-h} + k$	\Rightarrow	starting point = (h,k)	3. Reflecting
4.	$y = a \left x - h \right + k$	\Rightarrow	vertex = (h,k)	4. Vertical shifting
5.	$y = a\sqrt[3]{x-h} + k$	\Rightarrow	inflection point = (h,k)	

Remark: A negative value for "a" will cause a reflection through the x-axis.

Order of Transformations

Examples: Graph each function.

9. $y = \frac{1}{2}\sqrt[3]{x+3}$ (multi-transformation)

Final answer:

Graphing Transformations of Unknown Functions

Use the graph of y = f(x) shown to the right to graph each function g.

1.
$$g(x) = 2f(x+1) - 2$$

2.
$$g(x) = 3f(-x)$$

