Symmetry with Respect to the x-axis
Algebraic interpretation: Replacing y by -y results in an equivalent equation.
Graphical interpretation: x-axis acts as a mirror.

Symmetry with Respect to the y-axis
Algebraic interpretation: Replacing x by -x results in an equivalent equation.
Graphical interpretation: y-axis acts as a mirror.

Symmetry with Respect to the Origin

Algebraic interpretation: Replacing x by $-x$ and y by -y results in an equivalent equation.
Graphical interpretation: If (a, b) is a point on the graph, then $(-a,-b)$ is also a point on the graph.

Page 250 \#30
$x^{2} y^{2}+x y=2$
Symmetry with Respect to the x -axis:

Symmetry with Respect to the y-axis:

Symmetry with Respect to the Origin:

Even Function

$f(-x)=f(x)$
Note: If the graph of a function is symmetric with respect to the \mathbf{y}-axis, then the function is even.

Odd Function

$f(-x)=-f(x)$
Note: If the graph of a function is symmetric with respect to the origin, then the function is odd.

I recommend using the acronym YEOO to help you remember the relationship between symmetry and even/odd functions.

Page 250 \#46
$f(x)=2 x^{3}-6 x^{5}$

Page 250 \#33

Page 250 \#35

Page 250 \#36

Piecewise Function

Page 251 \#54

$f(x)=\left\{\begin{array}{ll}6 x-1 & x<0 \\ 7 x+3 & x \geq 0\end{array}\right.$.
(a) $\mathrm{f}(-3)$
(b) $\mathrm{f}(0)$
(c) $\mathrm{f}(4)$

Example: Graph the following function and find the range.
$f(x)=\left\{\begin{array}{cc}2 & x<1 \\ -x+3 & x \geq 1\end{array}\right.$.

Difference Quotient: $\frac{f(x+h)-f(x)}{h}, h \neq 0$

Page 252 \#84
$f(x)=-3 x^{2}+2 x-1$

