

# Introduction to Science and Mathematics

Physical Sciences Broward College Prepared for AST 1002 Horizons in Astronomy

### What is Science?

- Science is the methodological study of systems.
- Science studies these systems on why they work, how they work, and the relationship of these systems.
- Science tries to ask questions that quantify (numbers; equations) the systems.

### Scientific Method

- Brainstorm: Ask a Question
- Hypothesis: Testable Question
- Experiment: Testing the Question
- Theory: A Repeatable Experiment
- Law

### Scientific Method

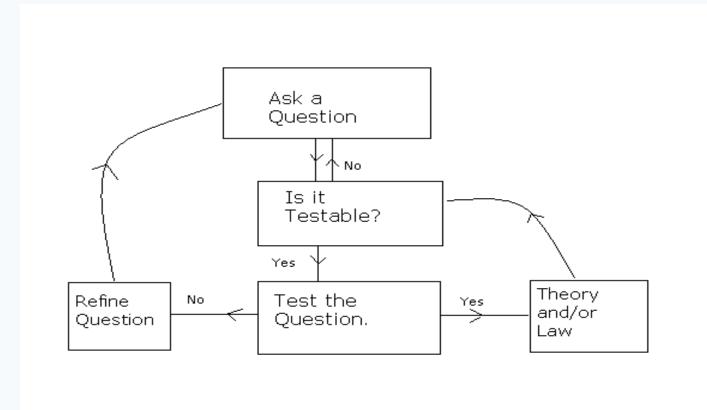



Figure 1. The Scientific Method

### Types of Science

- Physical Sciences
  - Studies how physical phenomena work.
- Biological Sciences
  - Studies how biological phenomena work.
- Social Sciences
  - Studies how social systems (people) work.

### **Physical Sciences**

- Astronomy
  - The study of how the planets, stars, galaxies, and universe work.
- Physics
  - The general study of how systems work individually and in connection.
- Chemistry
  - The study of how atoms combine and create compounds.
- Earth Sciences
  - The study of how the Earth and its atmosphere works

### History of Measurement Systems

- Earliest systems were on the Indus Valley in Pakistan (3000 1500 BCE)
- Egyptian, Roman, and Indian systems were well documented
- Developed standards based on many different objects and people

### English versus Metric

Both systems were developed and introduced when their mother countries were naval superpowers

- English
  - Introduced by Henry I and then completed by Henry VII and Elizabeth I, all of the Tudor Family in between 11<sup>th</sup> – 16<sup>th</sup> Century AD.
  - Based on the measurements of the royal family and objects in the empire
- Metric System
  - Introduced by France 1790
  - Used in most countries today via a treaty
  - Based on the powers of ten

### English Measurement

| Unit   | English                                                          | Standard                                                                                                 |
|--------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Length | 12 inches = 1 foot<br>3 feet = 1 yard<br>5,280 feet = 1 mile     | 3 barleycorn = 1 inch (Henry VIII)<br>1 yard = ½ arm span (Henry I)<br>8 furlongs = 1 mile (Elizabeth I) |
| Mass   | 1 pound                                                          | Based on the unit the stone                                                                              |
| Time   | 60 seconds = 1 minute<br>60 minutes = 1 hour<br>24 hours = 1 day | Based on the movement of the heavens                                                                     |

### Metric measurement

| Unit   | Metric          | Standard                                                                                                          |
|--------|-----------------|-------------------------------------------------------------------------------------------------------------------|
| Length | 1 meter         | <ul> <li>1/10,000,000 of distance between Equator and North<br/>Pole</li> <li>86 wavelength of Krypton</li> </ul> |
| Mass   | 1 gram          | Standard weight called the "Le Gran K"                                                                            |
| Time   | Same as English | <ul><li>The movement of the heavens</li><li>Cesium electronic movement</li></ul>                                  |

Note: The Metric System has two standards; the Systems International which is Meters, Kilograms, and Seconds and Centimeters, Grams, and Seconds. In astronomy, we use systems.

### English – Metric Conversions

- 1 mile = 1.609 km
- 1 inch = 2.5 cm
- 1 pound = 0.4526 kg
- 1 oz. = 28.35 g
- Temperature °Celcius =

(Temperature °Farenheit-32) \* 5 / 9

### **Temperature Scales**

Celsius to Fahrenheit Scales – At zero degrees Celsius, water freezes.

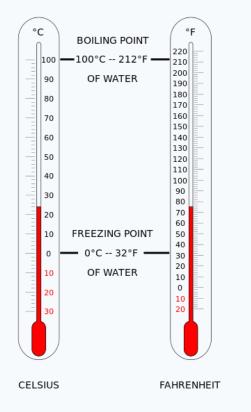



Figure 2. Celsius/Fahrenheit Thermometers (Wiki)

#### Celsius to Kelvin – At zero degrees Kelvin, the activity in the Universe stops.

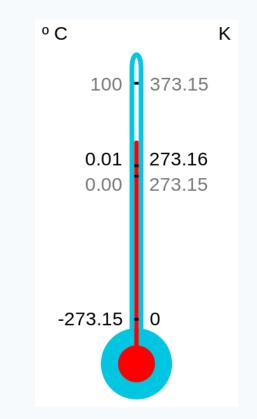



Figure 3. Celsius/Kelvin Thermometers (Wiki)

### **Conversion Example**

- We want to find how many kilometers is 6 miles.
- We can do this for any different conversion

$$1 \text{ mile} = 1.609 \text{ km}$$
$$6 \text{ miles} \left(\frac{1.609 \text{ km}}{1 \text{ mile}}\right) = 9.654 \text{ km}$$

### Symbols and Equations

- Equations
  - A symbolic representation of a relationship between variables
- Variables
  - A symbol representing a set of numbers
  - Independent versus Dependent variables
- Constants
  - A variable with a constant value
  - Example: speed of light

### Order of Operations in Math

| Please | Parentheses                    |
|--------|--------------------------------|
| Excuse | Exponents                      |
| My     | Multiplication (left to right) |
| Dear   | Division (left to right)       |
| Aunt   | Addition (left to right)       |
| Sally  | Subtraction (left to right)    |

### Logarithmic Math

- Multiplication
  - $\log(ab) = \log(a) + \log(b)$
- Division
  - $\log\left(\frac{a}{b}\right) = \log(a) \log(b)$
- Inverses

• 
$$-\log\left(\frac{b}{a}\right) = \log\left(\frac{a}{b}\right)$$

- Coefficients
  - $loga^b = b * log(a)$
- Anti-Log
  - $10^{\log(a)} = a$

### Order Operations example

Evaluate  $3 * 2 + 5 * (5 - 3)^2$ 

- First do the Parentheses  $3 * 2 + 5 * (2)^2$
- Second do the Exponent 3 \* 2 + 5 \* 4
- Third do the Multiplication 6 + 20
- Finally do the Addition 6 + 20 = 26

## Significant Figures and Scientific Notation

- Significant figures are non-zero digits in a number
  - The exception is when the zeros follow a decimal to the right of non-zero digits.
  - We typically use the least significant figures for our calculation.
- Scientific Notation is a compact way to express a very long large or small number.
  - Example: 3.00 X 10<sup>8</sup> m/s (the speed of light).
  - The decimal is between the first two significant digits.
  - The exponent is positive when we move the decimal to the left and negative when we move the decimal right.

### Understanding Measurements

- We organize our measurements into the set we call data (plural of the Latin word datum).
  - Example: Length
    - 3 in, 4 in, 56 in (or 3 m, 4 m, 56 m)
  - Example: Area (Length X Length)
    - 6 in<sup>2</sup>, 24 in<sup>2</sup>, 54 in<sup>2</sup> (or 6 m<sup>2</sup>, 24 m<sup>2</sup>, 54 m<sup>2</sup>)
  - Example: Volume (Length X Length X Length)
    - 1 in<sup>3</sup>, 8 in<sup>3</sup>, 27 in<sup>3</sup> (or 1 m<sup>3</sup>, 8 m<sup>3</sup>, 27 m<sup>3</sup>)

### Significant Figure and Scientific Notation Examples

- Tell me how many significant figure each number has:
  - 134 = 3 significant figures
  - 12,300 = 3 significant figures
  - 0.002345 = 6 significant figures
- Convert the numbers above to scientific notation
  - 134 = 1.34 X10<sup>2</sup>
  - 12,300 = 1.23 X 10<sup>4</sup>
  - 0.002345 = 2.345 X 10<sup>-3</sup>

### The Big Three in word problems

- Identify the VARIABLES in the problem.
- Identify the EQUATION you need to solve the problem.
- Identify what SOLUTION will complete the problem.

### Word Problem Example

Two substances fill up 54 cm<sup>3</sup> (Solution 1) and 20 cm<sup>3</sup> (Solution 2) and have masses of 4.0 grams and 10 grams, respectively. Which one will float?

- What are the VARIABLES? The four variables are the two volumes and the two masses.
- What is the EQUATION you need? The equation is the density equation.
- What is the SOLUTION to the problem? The solution is the smaller density.

### Word Problem Solution

*Variables*:  $V1 = 54 \text{ cm}^3$ ;  $V2 = 20 \text{ cm}^3$ ; m1 = 4 g; m2 = 10 g

Equation: Density 
$$= \frac{M}{V}$$

$$Density1 = \frac{M1}{V1} = \frac{4.0 \ g}{54 \ cm^3} = 0.07 \frac{g}{cm^3}$$
  
This one floats because it is smaller.

$$Density2 = \frac{M2}{V2} = \frac{10 \ g}{20 \ cm^3} = 0.5 \ \frac{g}{cm^3}$$

### What is Astronomy?

- The science of the study of physical properties of the planets, stars, galaxies, and the universe.
- The word comes from "astro" meaning star and "nomos" meaning name and/or law in Latin.
- Astronomy is different from astrology, which was the study of the motions of the celestial globe.

### Types of Astronomers

- Observational
  - Observers at telescopes obtaining observations and modeling those observations.
- Theoretical
  - Theoreticians at computers finding new models for the observations.

### Observational – Ground Based

Meyer-Womble Observatory; Mt Evans, Colorado (Altitude: 14,148 feet, Twin 28 inch Ritchey-Chretien Telescope)

**Professor Howard** 

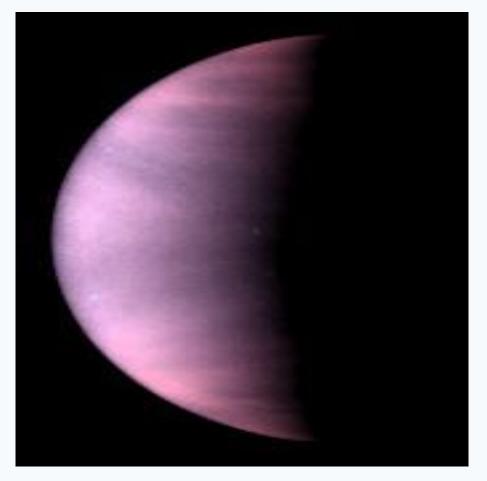

Southeastern Association for Research in Astronomy (SARA) Observatory; Kitt Peak, Arizona (Altitude: 6,800 feet, 36 inch Cassegrain Telescope



Figure 4. Meyer-Womble Observatory

Figure 5. SARA Observatory

### **Observational – Space Based**



- Venus imaged from Hubble Space Science Telescope.
- My favorite planet 😳!

Figure 6. Venus from Hubble (Esposito, 1995)

### **Observational – Satellite Based**



- Enceladus imaged from the Cassini Space Probe around Saturn
- Thought to have water under the icy surface

Figure 7. Enceladus from Cassini (NASA, 2008)

### Theoretical – Observations..

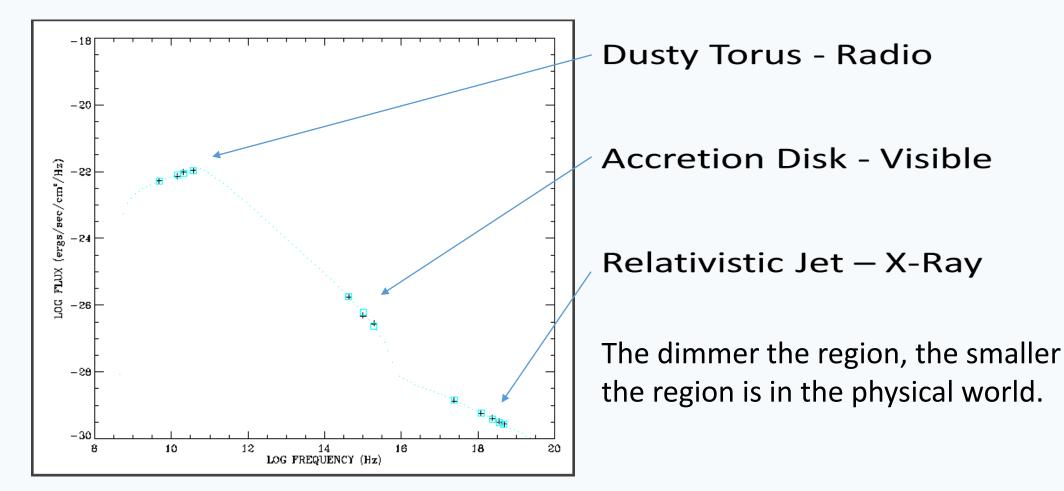
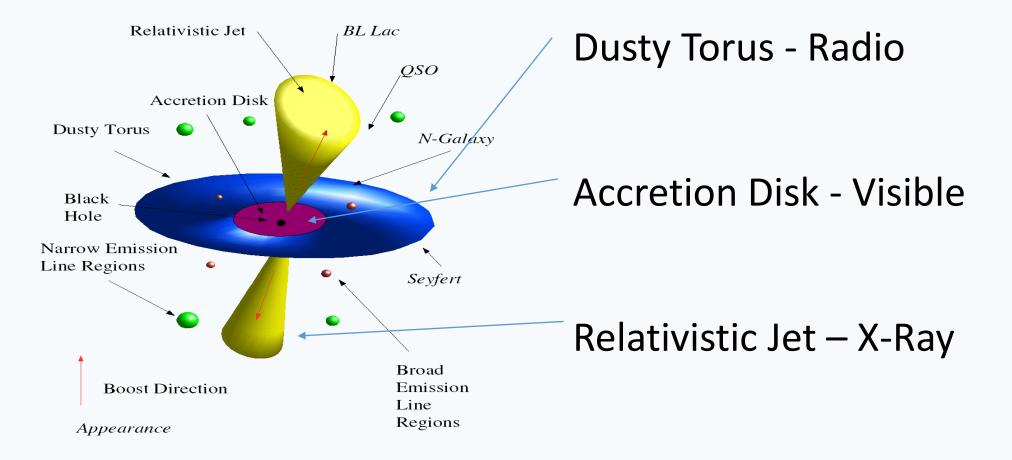




Figure 8. Power Spectrum of 3C 345 (Webb, 1994)

### Theoretical – Lead to Models of Active Galactic Nuclei



### Book/Course Image References

- Esposito, L., NASA (1995) Retrieved from: http://imgsrc.hubblesite.org/hu/db/images/hs-1995-16-gfull\_jpg.jpg
- NASA/JPL/Space Science Institute (2008) Retrieved from: <u>http://photojournal.jpl.nasa.gov/jpegMod/PIA11133\_modest.jpg</u>
- Webb, J.R., Schrader, C.R., Balonek, T.J., Crenshaw, D.M., Kazanas, D., Clements, S., Smith, A.G., Nair, A.D., Leacock, R.J., Gombola, P.P., Sadun, A., Miller, H.R., Robson, I., Fujimoto, R., Makino, F., Kii, T., Aller, H., Aller, M., Hughes, P., Valtoja, E., Terasranta, H., Salonnone, E., Tornikoski, M., Chism, W., (1994) *The Multifrequency Spectral Evolution of Blazar 3C 345 during the 1991 Outburst,* Astrophysical Journal, 422, 570 - 585

### Wiki Commons/Wikipedia Image References

• Celsius/Fahrenheit Thermometers: "Thermometer CF" by User: Gringer - n /a. Licensed under Public Domain via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Thermometer CF.svg#/me

dia/File:Thermometer CF.svg

• Celsius/Kelvin Thermometers: "CelsiusKelvin" by Celsius kelvin estandar 1954.png: Homo logosderivative work: kismalac - Celsius kelvin estandar 1954.png. Licensed under CC BY-SA 3.0 via Wikimedia Commons https://commons.wikimedia.org/wiki/File:CelsiusKelvin.svg#/media/F

ile:CelsiusKelvin.svg