Galileo and Newton

Physical Sciences
Broward College
Prepared for AST 1002
Horizons in Astronomy

What were the observations that caused the revision of physics?

- The observations of phases of other planets.
- The observation of moons around other planets.
- The observations of inertia, free fall.
- The observations of central seeking forces.
- The observation of binary stars.

Who was Galileo Galilei?

- 1564-1642 A.D.
- Was the first to use a spyglass for a telescope, Siderius Nuncius
- Taught school in Padua, Italy

Galileo's Observations

- Spyglasses used for 300 years before Galileo.
- In 1609, Galileo constructed his first telescope
- Galileo observed mountains on the moon, moons around Jupiter, and stars with the telescope.
- In 1613, Galileo observed Venus had phases.

Dialogue of Two Chief World Systems: 1623

- A debate of the Copernican system versus the Ptolemaic system
- Galileo had political enemies due to his belief in the Copernican system.
- Galileo had an audience with the Pope which he used as the model for his Ptolemaic debater
- Galileo was placed under house arrest in 1633.
- The book was restricted until 1835.

What science did Galileo create?

- The study of Mechanics
- Motion
- Speed
- Distance/time (v=d/t)
- Instantaneous versus Average
- Velocity
- Acceleration
- Change of velocity/time ($a=v / t$)
- Acceleration versus Deceleration

Velocity and Distance

Velocity of a Car

- What is the velocity of a car that travels 50 meters north in 3 seconds?

$$
\begin{aligned}
& d=50 \text { meters } \\
& t=3 \text { seconds } \\
& v=\frac{d}{t} \\
& v=\frac{50 \mathrm{~m}}{3 \mathrm{~s}}=16.67 \mathrm{~m} / \mathrm{s} \mathrm{North}
\end{aligned}
$$

Distance of a Car

- What distance does a car traveling on the Autobahn at $120 \mathrm{~km} / \mathrm{hr}$ travel in 3 hours?

$$
\begin{aligned}
& v=120 \mathrm{~km} / \text { hour } \\
& t=3 \text { hours } \\
& d=v t \\
& d=\left(\frac{120 \mathrm{~km}}{\text { hour }}\right) 3 \text { hours }=360 \mathrm{~km}
\end{aligned}
$$

Acceleration and Distance

$$
\begin{aligned}
& v_{f}^{2}-v_{i}^{2}=2 d a \\
& \frac{v_{f}^{2}-v_{i}^{2}}{2 a}=d
\end{aligned}
$$

Acceleration of a Car

- What is the acceleration of a car that starts out at rest and speeds up to $6 \mathrm{~m} / \mathrm{s}$ in 60 seconds?

$$
\begin{aligned}
& v_{f}=6 m / s \\
& v_{i}=0 m / s \\
& t=60 s \\
& a=\frac{v_{f}-v_{i}}{t}=\frac{6 m / s-0 m / s}{60 s} \\
& a=0.1 m / s^{2}
\end{aligned}
$$

Distance of a Car

- What is the distance travels in the time period in the above period?

$$
\begin{aligned}
& v_{f}=6 m / s \\
& v_{i}=0 m / s \\
& a=0.1 m / s^{2} \\
& d=\frac{v_{f}^{2}-v_{i}^{2}}{2 a}=\frac{(6 m / s)^{2}-(0 m / s)^{2}}{2\left(0.1 m / s^{2}\right)} \\
& d=\frac{36 m^{2} / s^{2}}{0.2 m / s^{2}} \\
& d=180 m
\end{aligned}
$$

Aristotle's Views

- Two spheres
- Sphere of Perfection: Planets, Stars, and Universe
- Sphere of Change: Earth
- Natural versus Forced Motion in the Sphere of Change
- Natural Motion: Earth, air, fire, and water
- Forced Motion: Required force by people
- Could not explain interaction at a distance

Horizontal versus Vertical Motion

- Vertical
- Leaning Tower of Pisa
- Free fall
- Galileo versus Aristotle
- Constant versus Accelerating objects
- Horizontal
- Inclined Planes
- Rolling Balls
- Inertia
- Compound
- The combination of vertical and horizontal motion
- The steeper the angle of the inclined plane the faster the movement; this was behavior mimicked planetary movement around the Sun.

Figure 2. Two Inclined Planes (Fix, 2004)

Vertical Motion Explained

$$
\begin{aligned}
& v_{i}=0 m / s \\
& v_{f}=v \\
& v=a t \quad v^{2}=2 d a \\
& v^{2}=a^{2} t^{2} \rightarrow a^{2} t^{2}=2 d a
\end{aligned}
$$

Now we solve for d

$$
d=\frac{a^{2} t^{2}}{2 a}=\frac{a t^{2}}{2}
$$

Height of a Building

- What is the height of a building from which a ball is dropped and takes 15 seconds to fall to the ground?

$$
\begin{aligned}
& t=15 s \\
& a=g=9.8 m / s^{2} \\
& d=\frac{a t^{2}}{2}=\frac{9.8 m / s^{2}(15 s)^{2}}{2} \\
& d=1,103 \text { meters }
\end{aligned}
$$

Who was Isaac Newton?

- 1642 - 1727 A.D.
- Born December 25, 1642 on Woolsthorp Farm
- At 18, attended Trinity College, Cambridge

Figure 3. Isaac Newton (Wiki)

Work at Woolsthorp

- In 1655, Newton returned to Woolsthorp due to the bubonic plague.
- During his time at Woolsthorp, Newton sought a central seeking force.
- Newton observed an apple falling and compared it to the moon's motion around the Earth.

The Return to Trinity College

- Newton studied optics and created the reflecting telescope.
- Edmund Halley (1656)
- Halley wanted to find an analytical solution for elliptical orbits
- Halley pushed Newton to publish work because he wanted a model to predict when the comet bearing his name would return.
- Newton published the Principia in 1687, which contained his three laws of motion.

Newton's First Law of Motion

- "Every object retains it state of uniform, straight-line motion unless acted up by an unbalanced force"
- Example: A car rolling forward.
- Inertia
- Mass

Professor Howard's Zero-G Ride

Click on the picture for video.

Figure 4. Microgravity Plane Profile (Wiki)

Newton's Second Law of Motion

- "The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to the mass of the object"
- Example: Weight of an object.
- $\mathrm{F}=\mathrm{ma}$

Force of a Car

- The car from the above problem has a mass of $2,000 \mathrm{~kg}$. What is its force traveling forward?

$$
\begin{aligned}
& m=2,000 \mathrm{~kg} \\
& a=0.1 \mathrm{~m} / \mathrm{s}^{2} \\
& F=m a=(2,000 \mathrm{~kg})\left(0.1 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& F=200 \mathrm{kgm} / \mathrm{s}^{2}=200 \mathrm{~N}
\end{aligned}
$$

Newton's Third Law of Motion

- "Whenever two objects interact, the force exerted on one object is equal in size and opposite in direction to the force exerted on the other object"
- Example: Standing on the Floor
- $\mathrm{F}_{\mathrm{AB}}=\mathrm{F}_{\mathrm{BA}}$

Circular Motion

- Centripetal versus Centrifugal
- Centripetal: A center seeking force.
- Centrifugal: A psuedoforce to balance out centripetal.
- All circular motion inside
- $\mathrm{a}_{\mathrm{c}}=\mathrm{v}^{2} / \mathrm{r}$
- $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}$

Circular Motion of a Car

- A Daytona car that is the same mass of the car above is going on a track of 40 meters and at 30 m / s, what is its centripetal force?

$$
\begin{aligned}
& m=2,000 \mathrm{~kg} \\
& v=30 \mathrm{~m} / \mathrm{s} \\
& r=40 \mathrm{~m} \\
& F=\frac{m v^{2}}{r}=\frac{(2,000 \mathrm{~kg})(30 \mathrm{~m} / \mathrm{s})^{2}}{40 m} \\
& F=\frac{(2,000 \mathrm{~kg})\left(900 \mathrm{~m}^{2} / \mathrm{s}^{2}\right)}{40 m} \\
& F=45,000 \mathrm{kgm} / \mathrm{s}^{2}=45,00 O \mathrm{~N}
\end{aligned}
$$

Newton's Law of Gravitation

- "Every object in the universe is attracted to every other object with a force that is directly proportional to the product of their masses"
- $\mathrm{F}=\underline{\mathrm{GM}}_{\underline{1}} \underline{\mathrm{M}}_{\underline{2}}$
R^{2}
- $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- The gravitational field acts like all the gravity of a massive object comes from its center.

Figure 5. Gravity Interaction (Fix, 2004)

Force between the Sun and Venus

$$
\begin{aligned}
& M_{\text {Sun }}=1.99 \times 10^{30} \mathrm{~kg} \\
& M_{V e n u s}=4.870 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

$$
\mathrm{R}(\text { Distance })=1.082 \times 10^{11} \mathrm{~m}
$$

$$
\mathrm{F}=\frac{\mathrm{GM}_{\mathrm{Sun}} M_{V e n u s}}{R^{2}}
$$

$$
\mathrm{F}=\frac{\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(1.99 \times 10^{30} \mathrm{~kg}\right)\left(4.87 \times 10^{24} \mathrm{~kg}\right)}{\left(1.082 \times 10^{11} \mathrm{~m}\right)^{2}}
$$

$$
F=5.5 \times 10^{22} N
$$

Orbital Velocity

$$
\begin{aligned}
& H_{c}=\frac{m v^{2}}{r} \\
& r_{0}=\frac{G M m}{} \\
& \text { TCT T T T }
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{2}=\sqrt[2]{\frac{\pi}{\pi}} \\
& v=\sqrt{\frac{G M}{\mu}}
\end{aligned}
$$

An object orbits another object when its forward speed is faster than its falling speed.

Velocity to Orbit Venus

$$
\begin{aligned}
& M_{\text {Vemus }}=4.878 \times 10^{24} \mathrm{~kg} \\
& R_{\text {Venus }}=6.052 \times 10^{6} \mathrm{~m}
\end{aligned}
$$

$$
v=\sqrt{\frac{G M}{r}}=\sqrt{\frac{\left(6.67 X 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(4.878 \times 10^{24} \mathrm{~kg}\right)}{6.052 X 10^{6} \mathrm{~m}}}
$$

$$
v=7,300 \mathrm{~m} / \mathrm{s}
$$

Newton's Form of Kepler's Third Law

$$
P^{2}=\frac{4 \pi^{2} a^{3}}{G(M+m)}
$$

Period of Venus

$$
\begin{aligned}
& M=1.99 \times 10^{30} \mathrm{~kg} \\
& m=4.870 \times 10^{24} \mathrm{~kg} \\
& \mathrm{R}=1.082 \times 10^{11} \mathrm{~m} \\
& P^{2}=\frac{4 \pi^{2} a^{3}}{G(m+M)} \\
& P^{2}=\frac{4 \pi^{2}\left(1.082 \times 10^{11} \mathrm{~m}\right)^{3}}{\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(4.870 \times 10^{24} \mathrm{~kg}+1.99 \times 10^{30} \mathrm{~kg}\right)} \\
& \sqrt{P^{2}}=\sqrt{3.767 \times 10^{14} \mathrm{~s}^{2}} \\
& P=1.941 \times 10^{7} s(1 \text { year } / 31,557,600 \mathrm{~s}) \\
& P=0.62 \text { years }
\end{aligned}
$$

Results of Newtonian Physics

- Ability to calculate the center of mass.
- Discovery of Neptune
- Adams: Theorized Neptune's existence
- George Airy: Tried to observe
- Urbain J. Leveri and Johann Galle: Discovers of Neptune
- Ability to model the motion of binary stars.
- We could find the escape velocity: the velocity need to escape the gravity of the planets. This allowed for inter-body travel in our Solar System.
- Confirmation of the results of Kepler and Copernicus.
- All three men received 0.62 Earth years for the orbital period of Venus.

Results of Newtonian Physics -Orbital Elements

- The final outcome of Newtonian physics is that creation of orbital elements.
- The elements allowing the precise timing of where an object is with respect to periapsis, the point of closest approach.

Newton's Cosmology

- Everything in perfect working order
- Planetary orbital procession not quite explained
- "God resets everything"

Book/Course Image References

- Fix, J. D. (2004) Astronomy: Journey to the Cosmic Frontier, New York, New York, McGraw- Hill Higher Education.

Wiki Commons/Wikipedia Image References

- Galileo: "Justus Sustermans - Portrait of Galileo Galilei, 1636" by Justus Sustermans http://www.nmm.ac.uk/mag/pages/mnuExplore/PaintingDetail.cfm?ID=BHC2700. Licensed under Public Domain via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Justus Sustermans Portrait of Galileo Galilei, 1636.jpg\#/media/File:Justus Sustermans Portrait of Galileo Galilei, 1636.jpg
- Newton: "GodfreyKneller-IsaacNewton-1689" by Sir Godfrey Kneller http://www.newton.cam.ac.uk/art/portrait.html. Licensed under Public Domain via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:GodfreyKneller-IsaacNewton-1689.jpg\#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
- Microgravity Plane: "Zero gravity flight trajectory C9-565" by NASA - C-9B Flight Trajectory, NASA Reduced Gravity Research Program. Licensed under Public Domain via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Zero gravity flight trajectory C9565.jpg\#/media/File:Zero gravity flight trajectory C9-565.jpg
- Orbital Elements: "Orbit1" by Lasunncty (talk). - Lasunncty (talk). Licensed under CC BY-SA 3.0 via Wikimedia Commons -
https://commons.wikimedia.org/wiki/File:Orbit1.svg\#/media/File:Orbit1.svg

