

Galaxies

Physical Sciences Broward College Prepared for AST 1002 Horizons in Astronomy

Normal Galaxies

What is a Galaxy?

- A galaxy is a group of stars that are gravitationally attracted to each member of the group.
- A galaxy has one billion and more stars.
- A galaxy has a dense, hot nucleus with diffuse nebulae and stars orbiting the nucleus.
- Most galaxies are believed to have a central black hole in the nucleus as a central energy producer.

Types of Galaxies

Figure 1. Hubble Classification Scheme (Wiki)

Elliptical and Spiral Galaxies

Figure 2. M 51 (Van Werven, 2015)

Figure 3 M 87 (Wiki)

M 87 Elliptical Galaxy

Irregular Galaxies

M 82 Irregular Type I Galaxy – Interacting galaxies making one galaxy

Large Magellanic Cloud Irregular Type II Galaxy – A billion or more randomly space stars

Figure 4. M 82 (Van Werven, 2015)

Figure 5. Large Magellanic Cloud (Wiki)

M 104 Peculiar Galaxy – Strange Object (SO)

Figure 6. M 104 (Wiki)

Active Galaxies

What makes a galaxy active?

- An active galaxy is a galaxy with a strong radio signal ratio with respect to the optical in the nucleus (usually around 30% radio to optical flux).
- Active galaxies have unusually bright nuclei that tend to outshine the diffuse material that is orbiting the nucleus.
- Jets of material are observed to originate from the nuclei of active galaxies.
- Active galaxies exist are large distances (100 Mpc 10 Gpc) as compared to normal galaxies.
- Also they have large variations in brightness as compared to normal galaxies.
- All the observations suggest that Active Galaxies are the young precursors to nearby normal galaxies.

Extended versus Stellar Active Galaxy

M 87 Elliptical – Extend Active Galaxy

Figure 7. M 87 (Wiki)

BL Lacertae Object – Stellar Object

Figure 8. BL Lacertae Object, Buehler Observatory, Emily Howard

M 87 Core & Disk

Figure 9. Core of M 87 (Ford, 1994)

Active Galactic Nuclei Modeling

Figure 6. Power Spectrum of 3C 345 (Webb, 1994)

Types of Active Galactic Nuclei

- Active Galactic Nuclei (AGN) are the nuclei of active galaxies.
- The types of AGN are Seyfert Galaxies, N-Galaxies (LINERs), Quasi-Stellar Objects (QSOs), and BL Lacertae Objects (BL Lacs).
- Seyferts and LINERs appear as extended objects such as spiral galaxies and elliptical galaxies, respectively.
- QSOs and BL Lacs are so bright in the optical that they appears as stellar objects rather than extended objects as galaxies.

Figure 10. Active Galactic Nuclei

Radio Map and Spectra of Active Galactic Nuclei

Radio Map of M 87 from Very Large Array and Baseline

AGN have large radio lobs and knots unlike normal galaxies.

They also have emission spikes unlike stellar objects which only have absorption spikes.

Spectrum of BL Lacertae from the Hale Telscope

Figure 11. Radio Map of M 87 (Wiki)

AGN Variability

- Long Term: Period of Years
 - Cause: No known cause
- Short Term: Period of Months
 - Cause: Matter the size of stars is suddenly accreted into black hole.
- Intraday: Period of Days
 - Cause: No known cause
- Microvariability: Period of Hours
 - Cause: Hot spots on either the accretion disk or jet.

Figure 13. Long-Term Lightcurve of BL Lac (Howard et al., Figure 14. Microvariablity of BL Lac (Howard et al., 2004) 2004)

Host Galaxies of Quasars

- Many of the active galaxies seem to have elliptical galaxies as host galaxies.
- The interaction with other elliptical and irregular galaxies seem to produce spirals.

Figure 15. Host Galaxies of Quasars (Bahcall and Disney, 1997)

Professor Emily's Pyramid of Distance Indicators

 H_{o} : Each Method is **Hubble Constant** based on the results from the **Distance Modulus:** lower level. **Comparison of the Magnitudes** of Stars or Galaxies Parallax: The direct geometric measurement of distance using proper motion of an object.

Hubble Constant

Figure 16. Hubble's Law (Boyd et al., 2013)

Distance to the Galaxies

• What is the distance to a galaxy that a recessional velocity of 25,000 km/s?

$Hubble = 72.0 \, km / s / Mpc$ Distance = 25,000 km / s

Galactic Evolution

Figure 17. Galactic Evolution (Wiki)

Book/Course References

- Bahcall, J. and Disney, M., and NASA (1997) Retreived from: <u>http://hubblesite.org/newscenter/archive/releases/1996/35/image/a/</u>
- Boyd, P., Smale, A., The Chromatics (2013) Astrocapella: HST Bop Retrieved from: http://www.astrocappella.com/background/hst_background.shtml
- Ford, H., Harms, R. Zlatan Tsvetanov, Z., Davidsen, A., Kriss, G., Bohlin, R., Hartig, G., Dressel, L., Ajay K. Kochhar, A.K., Margon, B., NASA (1994) Retrieved from: <u>http://hubblesite.org/newscenter/archive/releases/1994/23/image/a/</u>
- Howard, E.S., Webb, J.R., Pollack, J.T., and Stencel, R.S. (2004) *Microvariability and Long-Term Variability of Four Blazars*, AJ, 127, 17-23 Retrieved from: <u>http://iopscience.iop.org/1538-3881/127/1/17/fulltext/</u>
- Van Werven, A. (2015) Retrieved from: <u>http://www.ilovestars.com</u>
- Vermeulen, R.C., Ogle, P.M., Tran, H.D., Browne, I.W.A., Cohen, M.H., Readhead, A.C.S., and Taylor, G.B., (1995) When is a BL Lac not a BL Lac?, AJ, 452, L5-8 Retrieved from: <u>http://iopscience.iop.org/1538-4357/452/1/L5/fulltext/</u>
- Webb, J.R., Schrader, C.R., Balonek, T.J., Crenshaw, D.M., Kazanas, D., Clements, S., Smith, A.G., Nair, A.D., Leacock, R.J., Gombola, P.P., Sadun, A., Miller, H.R., Robson, I., Fujimoto, R., Makino, F., Kii, T., Aller, H., Aller, M., Hughes, P., Valtoja, E., Terasranta, H., Salonnone, E., Tornikoski, M., Chism, W., (1994) *The Multifrequency Spectral Evolution of Blazar 3C 345 during the 1991 Outburst*, Astrophysical Journal, 422, 570 - 585

Wiki Commons/Wikipedia Image References

- Elliptical Galaxy Evolution: "Development of massive elliptical galaxies" by NASA, ESA, and S. Toft (Niels Bohr Institute) http://www.spacetelescope.org/images/opo1410a/. Licensed under Public Domain via Wikimedia Commons -<u>https://commons.wikimedia.org/wiki/File:Development of massive elliptical galaxies.jpg#/media/File:Development of massive elliptical galaxies.jpg</u>
- Hubble Classification Scheme: "Hubblescheme" by Original uploader was Xerxes314 at en.wikipedia Transferred from en.wikipedia; transferred to Commons by User:IngerAlHaosului using CommonsHelper.. Licensed under CC SA 1.0 via Wikimedia Commons - <u>https://commons.wikimedia.org/wiki/File:Hubblescheme.png#/media/File:Hubblescheme.png</u>
- Large Magellanic Cloud: "Large.mc.arp.750pix". Licensed under Public Domain via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Large.mc.arp.750pix.jpg#/media/File:Large.mc.arp.750pix.jpg
- M 87: "Messier 87 Hubble WikiSky" by en:NASA, en:STScl, en:WikiSky http://wikisky.org/snapshot?img_size=&img_res=&ra=12.5138&de=12.3896&angle=0.0293&projection=tan&rotation=0.0&survey =astrophoto&img_id=905632&width=2160&height=2160&img_borders=&interpolation=bicubic&jpeg_quality=0.8. Licensed under Public Domain via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Messier_87_Hubble_WikiSky.jpg#/media/File:Messier_87_Hubble_WikiSky.jpg
- M 104: "M104 ngc4594 sombrero galaxy hi-res" by NASA/ESA and The Hubble Heritage Team (STScI/AURA) http://www.spacetelescope.org/images/html/opo0328a.html (direct link)http://hubblesite.org/newscenter/newsdesk/archive/releases/2003/28/image/a. Licensed under Public Domain via Wikimedia Commons - <u>https://commons.wikimedia.org/wiki/File:M104_ngc4594_sombrero_galaxy_hi-</u> res.jpg#/media/File:M104_ngc4594_sombrero_galaxy_hi-res.jpg